South Asia’s first aerial engagement in 48 years, which took place on the morning of February 27 2019, was noteworthy for two reasons. Firstly, the engagements between the two opposing air forces saw the successful usage of both beyond-visual-range air-to-air missiles (BVRAAM) and short-range air-to-air missiles (SRAAM), with the former being a first for the skies of South Asia. Secondly, both opposing air forces engaged one another not only with their respective multi-role combat aircraft (MRCA) fleets, but also with combat-support platforms like airborne early warning & control (AEW & CS) aircraft—the world’s first -ever such engagement in the history of aerial warfare. And it is in these two areas that witnessed outcomes that were not entirely surprising when analysed in detail, and which will have a profound impact on both future force modernization projects of both air forces, but also on the employment of offensive airpower in the next round of limited hostilities in South Asia.
At around 9:30am on February 27, IAF flight controllers noticed a large package of 24 PAF combat aircraft taking off in a matter of 15 minutes from three different air bases. These included at least 12 F-16C/Ds. As they approached the Line of Control (LoC), they split up into two different formations, with airborne battle management cues being provided by a Saab 2000 AEW & CS platform. The formations included four Mirage-VPAs, four Mirage-IIIEAs and four JF-17s headed for the Sundarbani-Rajouri-Naushera sub-sectors; and eight F-16s headed for the Rajouri-Mendhar sub-sector and Nangi Tekri in Karmara.
Pitted against them were two of the IAF’s upgraded Mirage-2000INs and four MiG-21 Bisons flying north of the Pir Panjal Range, and four Su-30MKIs to the south of the Range. The main PAF strike force comprised four F-16C/Ds armed with DENEL Dynamics-supplied Raptor-IID TV-guided gliding munition, while the remaining four F-16C/Ds and four JF-17s were tasked with the protection of the strike package while remaining in a rear area over the Mangla Dam near the PoK-Pakistan Punjab border.
Targets selected by the PAF for the air-strikes were the Indian Army posts at Bhimber Gali (elevation of 5,479 feet), Krishna Ghati Top (Nangi Tekri) at a height of 4,665 feet, Potha at an elevation of 4,073 feet, and an ammunition storage area in Narian (belonging to the 25 Infantry Division of the Indian Army) at an elevation of 2,000 feet. These targets, falling in India’s Rajouri sector, were deliberately selected for the sake of establishing Pakistan’s ‘moral; ascendancy’ along this portion of the LoC—given the fact that it is from these areas that the Indian Army dominates its opposing adversary’s Battal sector, which is located at lower altitudes.
However, the moment the intruding PAF F-16s gained altitude for crossing into the areas southeast of the Pir Panjal Range and approached their designated targets in Jammu at altitudes varying from 5,000 feet to 10,000 feet in order to launch the Raptor-IIDs, they were detected by the A-50I PHALCON by 10.25am, which in turn vectored the airborne MiG-21 Bisons towards their respective intercept courses. Since these MiG-21 Bisons climbed in the shadow of the Pir Panjal Range, the PAF’s Saab 2000 AEW & CS platform failed to detect them. This proved to be a blessing for the IAF, since the PAF’s attacking F-16C/Ds were taken aback and were forced to launch their Raptor-IIDs in great hurry. The Su-30MKIs carrying EL/L-8222 airborne self-protection jammer (ASPJ) pods were kept on standby further down south to engage the four PAF F-16s that were still orbiting 162km further to the west. It subsequently became evident that the PAF had no intention of creating a ‘furball’ either over PoK or over southern Jammu and all it wanted to achieve was to drive home a ‘point’ about the PAF demonstrating its will, means and capability to stage a ‘retaliatory sneak attack’ inside Indian territory.
By most accounts, while cruising at 15,000 feet altitude, the MiG-21 Bison flown by Wing Commander Abhinandan Varthaman engaged a PAF F-16D of 19 ‘Sherdils’ Sqn that had approached the Indian Army’s ammunition depot at Narian in southern Jammu and was exiting that location at an altitude of 9,000 feet. While the MiG-21 Bison made a shallow dive to get within R-73E firing range of the F-16, the latter’s pilot was alerted by his wingman about the impending attack and so he took an evasive measure by going into a steep climb to about 26,000 feet. By this time Wg Cdr Abhinandan had skillfully manoeuvred his MiG-21 Bison behind the fleeing F-16 and had positioned himself at a 60-degree angle of elevation below the F-16 for maximum head-on impact. He then fired an R-73E, which effortlessly struck the nose-section of the F-16D. However, even as the R-73E was closing on to its target, the wingman of the F-16 (Wing Commander Nauman Ali Khan) moved in from behind and fired an AIM-120C-5 AMRAAM from a distance of less than 12km, hitting the centre-fuselage of the MiG-21 Bison. A second AIM-120C-5 that was probably fired against Wg Cdr Abhinandan’s wingman (who had gotten separated from him) failed to hit its target and consequently it slammed into Mamankote Mallas village, Reasi, and caused an explosion that spread splinters and missile parts within a radius of 100 metres.
The entire aerial engagement lasted for some 90 seconds and ended at around 10:45am. The PAF F-16D was shot down over the Jhangar area of J & K, but its wreckage fell in Khuiratta inside Pakistan-occuiped-Kashmir (PoK), opposite the Lam Valley. The MiG-21 Bison, on the other hand, went down near Horra’n Kotla village, located 7km west of the LoC in PoK’s Bhimber district.
There are two probable reasons why Wg Cdr Abhinandan’s MiG-21 Bison was hit by the AIM-120C-5, while that of his wingman survived the aerial engagement: the former’s aircraft was not equipped with either a missile approach warning system, or MAWS (which provides advance warning on inbound guided-missiles of all types), or the EL/L-8222 high-band self-protection pod, while the latter had the EL/L-8222 and hence was able to jam the AMRAAM’s Ku-band active radar seeker. It needs to be noted here that universal air combat rules call for using one high-band self-protection pod for every two combat aircraft (comprising the flight leader and his/her wingman). However, since it is impossible to maintain formation during air combat, it is now preferable to have internally-mounted high-band self-protection jammers that can provide assured self-defence.
There are only three plausible reasons why the PAF preferred to use BVRAAMs instead of SRAAMs for this aerial engagement:
1) The PAF was unsure whether or not the IAF’s Su-30MKIs equipped with OLS-30 infra-red search-and-track (IRST) sensors would join the battle (if they were to, then they would have easily had the upper hand since they can cruise at higher altitudes from where the R-73E SRAAM/Sura-1 HMDS combination can be used with devastating effect);
2) The PAF, devoid of all-aspect SRAAMs that can be guided wide off-boresight by the Boeing-built Joint Helmet-Mounted Cueing System (JHMCS), was extremely vary of initiating within-visual-range engagements due to the guaranteed and combat-proven lethality and superior engagement envelope of the R-73E SRAAM/Sura-1 HMDS combination found in the MiG-21 Bison. Thus, even though equipped with either ITT Corp-built ALQ-211V4 or Northrop Grumman-built ALQ-131V jamming pods, the pilots of the PAF’s F-16s and JF-17 ‘Thunders’ on February 27 morning knew only too well that once the ‘furball’ started within a hemispheric air combat ‘bowl’ measuring 10 nautical miles in diameter, MRCAs like the Mirage-2000N and Su-30MKI (that were airborne at that time) were the perfect ones to fly. In fact, it is universally acknowledged that thanks to their superb aerodynamics and all-aspect SRAAM/HMDS combination, both the Mirage-2000N and Su-30MKI are exceptional platforms for close-in combat.
3) In the BVR arena, the IAF had a unique edge over the PAF through the incorporation of a radar finger-printing avionics suite (which is interfaced with the on-boasrd radar warning receiver sensors) on its fleet of Su-30MKIs that allows the H-MRCAs to operate in an all-passive non-cooperative target recognition (NCTR) mode (which none the PAF’s frontline MRCAs possess till today).
NCTR Mode: A Vital Force-Multiplier.
In essence, the NCTR mode enables a combat aircraft to approach its opponent/s in all-passive mode while at the same time maintaining total situational awareness about the range and bearing of the opposing aircraft whose on-board MMR is operating in the track-while-scan mode and the subsequent target lock-on mode when firing a BVRAAM. However, the laws of physics dictate that when the MMR is activated, the ASPJs have to be switched off for preventing electromagnetic interference (EMI). This is when the NCTR mode enables an aircraft like the Su-30MKI to passively lock-on to its opponent and fire BVRAAMs like the R-77 or even IIR-guided SRAAMs like the R-73E while at the same time keeping its EL/L-8222 ASPJ activated for completely neutralising hostile BVRAAMs like the AIM-120 AMRAAM. The hostile MRCA, on the other hand, remains unaware of the approaching BVRAAM or SRAAM (until it is too late to take evasive action) because it is illuminating the AMRAAM while at the same time being forced to de-activate its own integral ASPJ pod.
On the other hand, the sleek MiG-21 Bison in combination with the R-73E SRAAM/Sura-1 HMDS in sensor-lock mode proved to be a sure-killer. The R-73E hosts a very capable infra-red heat-seeker with a greater range and wider off-boresight sensor cueing capability than the PAF’s Raytheon-supplied AIM-9M-8 Sidewinder. A simple monocular lens in front of Wg Cdr Abhinandan’s right eye enabled him to slew the R-73E’s seeker onto his adversary at a high angle off target and achieve lock-on even though his MiG-21 Bison’s nose was pointed far away from its target. The Sura-1 comes mounted via a spring-loaded clip to a modified HGU-55P helmet. The pilot then connects the HMDS to a tester and adjusts the symbology so that it is centered in the monocle. Once in the aircraft, the simple act of plugging in the power cord means it is ready for use. There is no alignment process required with the Joint Helmet-Mounted Cuing System. It just worked. Being on the shooting end of the equation, one sees shot opportunities that he/she would never have dreamed of with SRAAMs like the AIM-9M-8 Sidewinder used by the PAF. Those on the receiving end are equally less enthused about being shot from angles they could not otherwise train to.
IAF’s MSWS Shortcomings.
Where the IAF’s MRCAs came short of their PAF counterparts was in the arena of self-protection suites—a situation similar to the one in mid-1999 when only after Operation Safed Sagar did the IAF decide to equip the bulk of its USSR-origin aircraft and helicopters with the hitherto-absent chaff/flare countermeasures dispensers. In the MiG-21 Bison’s case, the lack of conformally-mounted high-band self-protection hammers and MAWS is hard to explain, since such fitments have been available to the IAF from Sweden’s SaabTech, South Africa’s Avitronics and Grintek, and from Denmark’s TERMA since the mid-1990s. In case of the MiG-29UPG and Su-30MKis too, such mission-critical fitments have not yet been specified by the IAF, even though the PAF’s F-16s and JF-17s have had these since the previous decade! It was in March 1999 that Celsius of Sweden, which also owns SaabTech, bought a 49% share in Grintek Avitronics, South Africa's biggest passive electronic warfare development house, for US$4.8 million. And in March 2011 Cassidian Optronics, part of the defence and security division of EADS, acquired the majority shareholding in South Africa-based Grintek Ewation (GEW) Technologies. In October 2014 Cassidian Optronics became part of Airbus Defence & Space Optronics Airbus Group, which in March 2017 became HENSOLDT Optronics GmbH. Interestingly, on July 17, 2006, the then EADS and India’s state-owned Defence R & D Organisation’s (DRDO) Bengaluru-based Defence Avionics Research Establishment (DARE) had inked a Memorandum of Understanding on the joint development of a MAWS suite (using MILDS-F AN/AAR-60V2 dual-color IR/UV sensors) for three of the locally-developed EMB-135I AEW & CS platforms as well as other IAF combat and combat-support aircraft. Achieving initial operational capability for this suite was planned for 2011, while state-owned Bharat Electronics Ltd (BEL) was nominated for producing 36 MAWS suites, which were to be a part of the multi-sensor/multi-spectral warning system (MSWS) that also included RWRs and laser warning receivers.
Source :- Prasun K Sengupta
View attachment 46757