Kaveri Engine

samsaptaka

तस्मात् उत्तिष्ठ कौन्तेय युद्धाय कृतनिष्चय
New Member
Joined
Aug 15, 2016
Messages
1,609
Likes
5,849
Country flag

Baba kalyani rocks.
I would say government should also allow kalyani group to become partner with GTRE on Kaveri to gain more knowledge and know how.
What is written ? Unable to view the tweet...
 

AnantS

New Member
Joined
Jan 10, 2013
Messages
5,890
Likes
15,774
Country flag
hmm Is this kind of infighting holding DMRL back? see thread. If allegations true.. once again highlights malise our Govt Funded R&D centers suffer from. Never realized, how this could affect even critical projects
 

Assassin 2.0

New Member
Joined
Aug 13, 2019
Messages
6,087
Likes
30,705
Country flag
IUCAV-UHF20 will be “Dry Kaveri” Core
Kaveri-Turbofan-Engine-GTRE-India[6].jpg


derivated engine development which GTRE has taken up for the development to power India’s first autonomous stealthy unmanned combat air vehicle (UCAV) called as “Ghatak ” DRDO has been provided Rs. 1068.69 Crs for the IUCAV-UHF20 program. While the original Kaveri project was meant to power the light combat aircraft but it got shelved as the engine could not deliver sufficient thrust for the fighter aircraft. In its revived avatar, the engine will be modified and its afterburners will be removed to power the first Indian UCAV. IUCAV-UHF20 Engine will have a Dry thrust of 52kN to power a 15 tonne Ghatak UCAV.
 

Karthi

New Member
Joined
Jul 15, 2018
Messages
2,214
Likes
17,755
Country flag
DRDL blades can withstand 1400 C temp .
Not good enough .
M88 can withstand 1850C. PW 119 can withstand a record temperature of 2200C .
Don't know the figure 1400 is with or without heat dissipation coatings
 

Karthi

New Member
Joined
Jul 15, 2018
Messages
2,214
Likes
17,755
Country flag
Everything you want to know about F135.



The JSF-F119 was the engine of the X-35 concept demonstrators, and because of the short time-scale it was in turn a direct derivative of the F-22's F119 engine.

In contrast, the F135 is optimised for the propulsion of the F-35, though it is likewise derived from the F119, and is thus a two-shaft low-BPR turbofan with an augmentor. On the basis of information released by 2005 the only significant difference between the two engines is that the F135 has a two-stage LP turbine (that of the F119 having a single stage). Whereas the F119 is loosely described as being "in the 35,000 lb (155.75 kN) class", and the JSF-F119 as being rated in the 170 kN (38,200 lb) class, the F135 is described as "in the 40,000 lb (178 kN) class." Indeed, it is likely that the F135 will eventually be developed to give power well beyond the figures given in the data below.

Apart from the broad outline given in the description below, because of its high security classification, little is publicly known of the actual hardware of the F135, apart from the overall opinion that, as the crucial blading is all fractionally larger, because of the greater mass flows, the engine should be exceptionally tough and durable. Pratt & Whitney has, however, been permitted to disclose some of the radical advances that this engine will introduce in the fields of self-diagnostics and health monitoring. Among technological "firsts" claimed for the basic F135 are on-wing (this simply means "with the engine installed in the aircraft") trim balancing, elimination of the need to rig the installation on replacing an engine, and the elimination of safety wire (previously used to ensure security of such items as nuts and bolts).

Ground-breaking PHM health-monitoring and self-diagnostics systems. The intention is that PHM, a new acronym which will become important (meaning Prognostics and Health-Monitoring), will automatically take account of any in-flight fault, or incipient fault, adjust engine operation and inform the pilot, and in real time transfer data to the aircraft's home base. Thus, any replacement components will be ready for retrofit as the aircraft lands, with the engine pronounced fit again (the plan is) in about 15 minutes, which is said to be a 94 per cent improvement over present times. Of course, that is based on the replacement of externals, not such items as turbine blades.

Externals, in fact, differ markedly from those of the F119 used in the twin-engined F/A-22, though accessories are grouped on the underside as in the ancestor engine. The F135 is expected to set a new low need for special maintenance tools, and to have every external item immediately available upon opening the large access doors with stealth-type zig-zag edges. Indeed, Pratt & Whitney says "all critical features" will be at once accessible. Objectives include a reduction in operating cost -- presumably compared with such engines as the F100-PW-229, for example -- of 50 per cent, and an extension in time between scheduled maintenance of 225 per cent (one F135 document even claims "Scheduled maintenance requirement eliminated"). To this end, PHM will make use of electrostatic and other sensors to monitor such parameters as debris generation, vibration, blade health and lubricating-oil quality. The suite of sensors will constantly monitor approximately 500 data streams, which will be integrated with the F-35's own systems. The complete PHM system has been developed in partnership with NASA Ames, which created vital data-fusion algorithms, NASA Dryden and NASA Glenn, with flight development to be carried out with a C-17. As noted previously, the aim is to predict the need for inspection or parts-replacement, so that, via a satellite link, the airbase or aircraft carrier knows the engine health before the aircraft returns from its mission.

Apart from the challenging 94 per cent improvement in fault-rectification time, other design objectives include a 35 per cent reduction in cost of ownership, compared to legacy systems, a reduction in fault-detection time despite a 50 per cent reduction in the number of maintenance technicians, three times the hot-section reliability, and a 225 per cent increase in time between shop visits.

Back in 1997 the JSF programme had firmed up into three major aircraft versions, conventional (CTOL), STOVL and carrier (CV). Today these are designated as:

F-35A Engine: F135-PW-100. This is the baseline version of the F135.

F-35B Engine: F135-PW-600. This engine differs from other versions in incorporating a vectoring nozzle, bleed-air ports for roll posts for lateral control at low airspeeds, and a forward drive shaft to the LiftFan to provide lift independently of the wings. The basic engine is identical to other versions.

F-35C Engine: F135-PW-400. This is almost identical to the F135-PW-100, apart from small changes in accessories, and elimination of materials not resistant to salty environments.


The following refers principally to the SDD engines:

Type: Two-shaft augmented turbofan, the F135-PW-600 version having additional STOVL features.

Intake: The intake hub is the same in all versions, being unaffected by connection of the LiftFan drive shaft.

Fan: Three integrally bladed rotors, derived from F119 but with new features giving greater mass flow with higher pressure ratio, improved stability, maximum resistance to bird and other impact damage, and minimum signature. Significantly lighter and less costly than predecessors, yet provides most of the thrust. The casing is the first to be made for the US military from organic-matrix composite (OMC) material. First-stage vanes (stators) hollow OMC, rotors 2 and 3 flank-milled titanium alloy. Split casing permitting reblading or minor repairs, and weld repairs are (mid-2004) being developed for all stages. Inside the nosecone a single bolt permits removal of the fan module in 40 minutes. This bolt is replaced in the Dash-600 engine by a connector to the LiftFan drive shaft. Inlet diameter 1,168 mm (46.0 in). Bypass ratio, (F135-PW-100, -400) 0.57; (F135-PW-600), conventional flight 0.56, powered lift 0.514.

HP Compressor: Six-stage SDD compressor derived from F119, rotating in opposition to LP spool. Split forward case in titanium alloy housing two stages of asymmetric variable-incidence guide vanes (stators). Cast nickel-alloy rear stators grouped in segments in titanium-alloy ring casing of high creep strength. All stators integrally bladed, either flat-milled like the fan or high-speed milled. All six rotors integrally bladed, first two in damage-tolerant titanium alloy, the remainder high-strength nickel alloy. Crucial No 3 bearing is a simple squirrel-cage unit, lighter and easier to install than the corresponding bearing in the F119 (which comprises a ring and 24 rods). The production bearing may be made of corrosion-resistant silicon nitride hybrid ceramic. Mass flow (F135-100) 139.6 kg (307.8 lb)/s. OPR (F135-PW-100, -400) 35, (F135-PW-600) conventional flight 34, powered lift 29.

Combustion Chamber: Short annular diffuser/combustor, derived from F119. Outer casing including HPT nozzle ring (lighter and less costly than in previous P&W fighter engines), handling airflow at 4,150 kPa (600 lb/sq in) at 649°C (1,200°F), and containing air-conditioning connections and inspection ports. Liner with impingement and film cooling containing Floatwall ceramic-coated nickel-based cast segments, each containing "thousands of holes", which "float" from their anchored location. Intense combustion with fuel/air ratio 20 per cent higher than in F100 engine to give near-record gas temperature exceeding 2,200°C (4,000°F).

HP Turbine: High-work single stage based on F119, with advanced airfoil coating and cooling derived from F119, but with cooling airflow doubled. Impingement cooling augmented by closing down rear stator angles. Nozzle ring organic-matrix vanes. The rotor comprises a main disk, miniature disk and cover plates, all incorporating the same high-strength powder-metallurgy (sintered) high-rotor blades of second-generation single-crystal Ni-based alloy, with advanced outer air seals. The HPT rotates at speeds exceeding 15,000 rpm, generating 47,725 kW (64,000 shp) from gas at just over 1,649°C (3,000°F), cooled by air supplied at 538°C (1,000°F) from the HPC. To minimise pressure loss the rotor blades are cooled by Tangential On-Board Injection (TOBI), each blade being a complex casting with multiple cooling passages. Growth in blade-tip diameter is controlled by a unique slow-responding thermally isolated support ring in materials selected for their low thermal expansion, giving passive clearance control through the normal engine-operating range.

LP Turbine: Two-stage design giving significantly greater shaft power than the single-stage LPT of the F119. Rotates in opposition to the HP turbine. Typical of the simplified design of the F135 are the main shaft bearings, (see note under HP compressor), and it is possible that the full production F135 may have a corrosion-resistant ceramic (silicon nitride) bearing. In the F135-PW-600 the LPT torque is transmitted through the fan and a dry-plate clutch to the LiftFan drive shaft, the turbine power being shared by the two driven items. Casing fabricated in refractory nickel and Pratt & Whitney proprietary materials. Supports aft-bearing compartment, whilst diffusing and turning the 1,093°C (2,000°F) efflux with minimum pressure loss (see next).

Afterburner: Large-volume with advanced flame-holder system. Fully variable convergent/divergent nozzle, with 15 hydraulically driven hinged flaps, controlling propulsive jet at 621 kPa (90 lb/sq in) at up to 1,927°C (3,500°F). Unique pressure-balance system to assist the hydraulic actuators which vary area and profile, and also to assist bypass air to reduce area when maximum loads are encountered. In the F135-PW-600 the complete nozzle can vector through 95° in 2.5 seconds to give 80.34 kN (18,000 lb st) lift force for STOVL. The Dash-100 and -400 LO axi-symmetric nozzle; The Dash-600 3BSM (three-bearing swivel module) has shorter variable flaps. It was designed to be able to bolt directly on to the STOVL version of the rival F136-GE-600 engine.

Accessories: Accessory gearbox driven off main HP shaft. Integrated Power Package (IPP) comprises the engine-start system and the F-35's Auxiliary Power Unit (APU). Dual fixed-displacement vane-type fuel pumps (the gear-type originally used added too much heat), with servo valves. Fuel/oil heat exchanger. Advanced prognostic and on-condition health-management systems. Commercially developed fire containment system.
 

Karthi

New Member
Joined
Jul 15, 2018
Messages
2,214
Likes
17,755
Country flag
We should give Jet Engine development to Private Companies like L&T , TATA, Kalyani etc , work culture of GRSE is not promising
 

dude00720

New Member
Joined
Jan 13, 2010
Messages
467
Likes
1,595
Country flag
DRDL blades can withstand 1400 C temp .
Not good enough .
M88 can withstand 1850C. PW 119 can withstand a record temperature of 2200C .
Don't know the figure 1400 is with or without heat dissipation coatings
Dont the Russians use Titanium in their engines? If Yes, why dont Indians use the same. The Biggest problem India has is the single crystal blade reliability at Higher temperatures. maybe a new material could help.
 

Assassin 2.0

New Member
Joined
Aug 13, 2019
Messages
6,087
Likes
30,705
Country flag
Dont the Russians use Titanium in their engines? If Yes, why dont Indians use the same.
Maybe because of heavier weight and less efficient than western engines as we know because of Russian material/ blades are not as efficient as western one's because Russian engines are still 4fan 9 stages and in comparison to French M-88 is 3/6.
 

Assassin 2.0

New Member
Joined
Aug 13, 2019
Messages
6,087
Likes
30,705
Country flag
Supersonic cruise or supercruise is a term which refers to the ability of a combat aircraft to sustain supersonic flight without using afterburning thrust.

Combat aircraft have had supersonic capability since the 1950s, exploiting afterburners to effectively multiply available thrust and thus overcome the drag rise characteristic of transonic and supersonic flight, as well as improving climb, turn and acceleration performance. The additional thrust advantage of the afterburner comes at a prohibitive price - fuel burn is multiplied severalfold as fuel is injected into the tailpipe and combusted. A byproduct of afterburner use is a dramatic increase in the aircraft's heat signature, the engine plumes becoming effectively an infrared beacon which can be detected and tracked from dozens of miles away.

In practical terms conventional gas turbine engines afford only a transient supersonic capability, one which must be used very carefully as it can expend thousands of pounds of fuel in minutes, and advertise the fighter's presence and energy state from tactically very useful distances.

Having the ability to sustain supersonic speeds without these drawbacks affords numerous advantages in combat. The first of these is that entering an engagement the supersonic fighter has a reserve of kinetic energy which a subsonic opponent does not have. As a result the supersonic fighter can often dictate the terms of the engagement.

More importantly, sustained supersonic speed presents genuine problems in engagement kinematics for an opposing conventional fighter. Even in Beyond Visual Range (BVR) combat, air to air missiles have kinematic limitations. To effect a kill a fighter must position itself so the target falls into a 'no escape zone' for the missile type being used. Unless this precondition is met, the missile will likely run out of energy and be unable to engage the target.

In classical intercept geometries, fighters are typically vectored into a head to head closing geometry upon which the player with the earliest firing opportunity, whether afforded by longer radar/missile range, or supporting networking capability, has the advantage. Where both fighters have matched conventional kinematic capabilities, the game well and truly revolves around incremental advantages in missile capability, or situational awareness, provided by onboard or offboard sensors.

This delicate balance, and the advantages yielded by incremental imbalances in missile and sensor technology, will collapse once one of the fighters has the capacity to sustain supersonic speeds. As a result, even modest heading changes by the supersonic fighter, when positioning for the engagement, will force the conventional fighter to go into afterburner early, and typically will create enough separation to ruin the conventional fighter's missile shot geometry. In effect, conventional fighters flying against fighters with sustained supersonic capability usually do not get good opportunities for BVR missile shots. Only a very significant advantage in the kinematic performance of the missiles carried by conventional fighters can offset the advantages held by the player with sustained supersonic capability.

The classical case study is the obsolete Cold War MiG-25 Foxbat, used in reconnaissance, interceptor and defence suppression roles. Capable of sustaining Mach 1.8 class speeds even with external stores, the aircraft proved extremely difficult to engage during the 1991 Desert Storm campaign - the only case study we have of an air battle involving BVR combat and top tier conventional fighters such as the F-15C and F-14 series. While the US and Israelis have successfully killed Foxbats on numerous occasions, invariably this involved carefully setting up an engagement against a target behaving predictably.

The reality is that the situational awareness advantages afforded by modern ISR and networking capabilities only work where the fighters using them have kinematic parity with their opponents. Once the opposing fighter has a significant kinematic advantage, the tables may well be turned. Given that most modern fighter fleet operators have AEW&C capabilities, or are acquiring AEW&C capabilities, the line of argument which presents AEW&C and networking as an air combat panacea is little more than nonsense. The issue of long range Russian 'counter-AWACS' missiles such as the R-172 and R-37 is a consideration in its own right. AEW&C and networking are becoming a common prerequisite, driving the capability contest yet again into other areas - and supersonic cruise will be the next arena in the global competition for air superiority.

Achieving genuine supersonic cruise capability hinges on two technological prerequisites. The first is having a powerplant which develops enough dry thrust at altitude to offset supersonic airframe drag. The second is having an airframe design built for low supersonic drag. Unless both conditions are met, supersonic cruise capability is not achievable.

The airframe issues dictate a wing design typically with 45 degrees or more of leading edge sweep, and suitable fuselage area ruling. Moreover, weapons must be carried internally or in a semi-conformal or conformal arrangment, to avoid a supersonic drag penalty. Pylon mounted missiles are not the preferred strategy. To date, airframe aerodynamics have not been the obstacle in the supercruise game. Engine capabilities have remained the principal obstacle.

A turbofan engine designed for supersonic cruise will be characterised by a much higher turbine inlet temperature than contemporary 'conventional' fighter engines. It is this operating cycle which permits the engine to sustain higher dry thrust ratings at high altitudes. This has also proven to be the primary obstacle to date in building supercruise engines, as it requires advanced materials and advanced turbine cooling techniques.

The first service to recognise the importance of supercruise was the US Air Force, which incorporated supercruise into the early requirements definition of the Advanced Tactical Fighter (ATF) program, which eventually coalesced into today's F/A-22A Raptor. An extensive and expensive engine technology research and development effort led to the design of the Pratt and Whitney F119-PW-100 engine which powers the F-22A. Delivering around 35,000 lbf of afterburning thrust, the F119-PW-100 is the most powerful fighter engine manufactured in the Western world. The simplest qualitative measure of the F119-PW-100's performance is that this engine has a dry thrust performance envelope matching the afterburning thrust envelope of the F100-PW-100 series engines fitted to the F-15C/E and many F-16 variants.

As a result the F-22A is the only production fighter in existence with a genuine supersonic cruise capability and the enormous kinematic advantages this affords in combat. This analyst had the opportunity to discuss the practical aspects of supercruise capability with one of the F-22A test pilots some years ago. Not only were chase fighters unable to keep up, but in mock intercepts flown by F-16Cs and F-15Cs against development F-22A airframes, even modest 20 degree heading changes caused the teen series fighters to abort their intercepts, having burned their fuel down to bingo levels.
 

dude00720

New Member
Joined
Jan 13, 2010
Messages
467
Likes
1,595
Country flag
Maybe because of heavier weight and less efficient than western engines as we know because of Russian material/ blades are not as efficient as western one's because Russian engines are still 4fan 9 stages and in comparison to French M-88 is 3/6.
Nickel density is 8.908 g/cm³

Titanium density is 4.506 g/cm³

So, weight is no a problem. We can actually get more thrust due to lower weight requirements.

Maybe, Titanium is costly. 2.5k for a Kg while Nickel 800 Rs/kg.

But, for National strategic purposes we should be o with Higher prices for Titanium.

Anyone familiar can elaborate.
 

IndianHawk

New Member
Joined
Sep 24, 2016
Messages
9,058
Likes
37,675
Country flag
Nickel density is 8.908 g/cm³

Titanium density is 4.506 g/cm³

So, weight is no a problem. We can actually get more thrust due to lower weight requirements.

Maybe, Titanium is costly. 2.5k for a Kg while Nickel 800 Rs/kg.

But, for National strategic purposes we should be o with Higher prices for Titanium.

Anyone familiar can elaborate.
I will just say this . It's not a single metal or the cost of metals. It's metallurgy the art of mixing them and layering them to extreme precision etc. Which is important.

That's why we have been investing in new gen laser cutters and layering solutions.
 

Articles

Top