CSIR-NAL's contribution to the GSLV-D5 programme
The Indigenous Cryogenic Upper Stage was successfully flight-tested onboard GSLV-D5 launch vehicle on January 05, 2014 from Satish Dhawan Space Centre SHAR, Sriharikota. In this successful flight of GSLV-D5, a communication satellite - GSAT-14 - was launched very precisely to its intended Geosynchronous Transfer Orbit. CSIR-NAL is proud to have been associated with the programme. A gist of the contribution made from CSIR-NAL is outlined here.
Contributions from NTAF for the GSLV D5 configuration
In year 2010 after GSLV failure, VSSC came up with an urgent requirement of unsteady pressure measurements in ITS region with simulated wire tunnels for post – flight failure analysis. One of the force models was modified for the above studies and results were supplied in a month's time which has given a valuable input to the project.
Later in year 2011, it was decided to complete aerodynamic re-characterization of the GSLV D5 vehicle with fully simulated wind tunnel model. The major challenge was to design, manufacture and test models for force measurements, steady and unsteady pressure measurements in a very short time frame. It was decided to design the models at CSIR-NAL and manufactured at VSSC. The design project team worked in two shifts and completed the design of three models and model components were manufactured at VSSC within a record time. Final assembly of the force model, instrumentation of about 160 pressure ports on steady and about 45 unsteady pressure ports on models were carried out at CSIR-NAL. To complete aerodynamic characterization of the vehicle about 1000 runs were carried out on the complete force model, truncated unsteady and steady pressure in CSIR-NAL 0.6m and 1.2m wind tunnels. For detailed unsteady pressure measurements, the existing 24-channel high-speed data acquisition and processing system was upgraded to 48-channel system and about 80 runs were conducted. For steady-pressure measurements on GSLV model of about 150 pressure ports were instrumented. All these activities were carried out within a record time.
V Nagarajan
CSIR-NAL ATF & ISRO's GSLV programme
ATF at NAL has been involved in the dynamic environment qualification of stages, subsystems and components from the very beginning of the GSLV programme. 30 major acoustic test programmes on the GSLV were completed at ATF, spreading over the years 1995 to 2013 with a total of 515 blowdowns. Considering the fact that ATF conducts acoustic tests on full scale launch vehicle hardware with some of the hardware being actual systems used for flight, this has been a mammoth task. The GSLV Heat Shield – both metallic as well as CFRP, the Core base shroud, the 1/2 & 2/3 interstages, the strapon nosecones, the L40 engine bay and the strapon nosecone avionic decks are the major stages/subsystems qualified at ATF. The earlier GSLV launches used the Russian cryogenic stages and hence these stages did not undergo acoustic tests at ATF. During the initial acoustic test programmes at ATF on GSLV subsystems, several vital design issues were detected , fixes incorporated and retested. It is worth noting that for each flight of the GSLV, several flightworthy subsystems, such as the Strap on Nose Cone and the avionic decks of each of the strapon boosters underwent acoustic tests at ATF.
ATF has established an excellent work culture in tune with the requirements of ISRO for providing seamless support for the acoustic qualification of the GSLV. Necessary infrastructure has been established for the purposes of handling , assembly, instrumentation, testing and post test inspections of the large sized test specimen. The infrastructure at ATF has been continuously evolving to keep pace with the increasing size of the test specimen. For the GSLV programmes, ATF has added additional unloading and assembly areas which have helped meet the requirements of bigger sized test specimen. The GSLV programme required ATF to develop certain highly unconventional test methodologies. In the initial days of the GSLV cryogenic stage development programme, designers required to test the homogeneity of the temperature insulating material which was bonded to the the shell of the cryo stage under acoustic loads. The challenge was to simulate the acoustic environment and at the same time, simulate,the low temperatures which the cryo stage shell would have to endure and maintain a homogenous bond. ATF provided a very unconventional test methodology which allowed simulation of the required low temperatures with liquid nitrogen and generation of the acoustic levels to which the panel would be subjected (see image above).
This test provided valuable inputs to the VSSC and LPSC teams involved in the design of the indigenous cryogenic stage. Several such "unconventional" acoustic tests continued throughout the GSLV qualification programme and over the last year, the indigenous cryo engine/stage subsystems underwent a number of these tests, the results of which were very closely linked to the actual integration of the flight stage. It is very heartening to note that the results / observations of the acoustic tests conducted on several subsystems of the cryo stage at ATF had a direct impact on the integration and assembly processes of the stage. In addition, changes incorporated in the assembly processes of the stage were also being verified for integrity under acoustic loading. For such acoustic tests, very high acoustic levels of the order of 164 dB were required to excite very localized areas on the specimen. The wire tunnel , umbilical connector units , the cryo stage vent valves , the LH2 vent and relief line and the protection plates in the ITT region were required to be subjected to such localized, high acoustic levels.In order to provide such high acoustic levels, ATF had to carry out extensive mapping of acoustic amplitude and frequency in the immediate vicinity of the exponential horns and provide specimen mounting interfaces at these locations . This work needed to be carried out in almost real time since the test requirements were continuously changing based on various considerations and recommendations of test and evaluation committees. The image below shows the wire tunnel of the cryo stage mounted at a height of 11.5 metres near the 25 Hz exponential horn to carry out an acoustic test at a level of 164 dB at low frequencies. A similar test was also conducted on the umbilical connector unit which houses the interfaces (both electrical as well as cryo fuel) between the launch pedestal and the cryogenic stage. The entire umbilical connector unit assembly was also acoustic tested near the 25 Hz horn at 11.5 metres height. The series of acoustic tests also involved assembly of the wire tunnel and the umbilical connector unit , as on the flight stage and testing the combination near the 80 / 160 Hz horns of ATF at levels of 162 dB. The test sequence involved , simulation of a variety of fastening techniques and also the use of teflon, metallic inserts and washers to determine torque retention in the fastened assemblies. The results of these tests played a major role in the finalization of fastening techniques for a large number of assemblies. Tests were also carried out on the carbon composite cover plates used in the inter tank truss region of the cryo stages to provide protection to the various gas line interfaces located there. An acoustic test was also carried out on the Liquid Hydrogen Vent Pipe and the vent valve assembly. This is also a very crucial subassembly of the cryogenic stage.
A major acoustic test programme involved tests on a subassembly of the cryogenic stage consisting of the liquid oxygen tank, the lower shroud covering the the truss region, truncated main cryogenic engine, the steering engine, the wire tunnel in the tank and shroud portion, the Inter Stage 2/3L and the separation plane connectors. The principal purpose of this test was to determine the integrity of the shroud, verify separation connector mating status and to determine the induced vibration response for the specified acoustic loading. This test was conducted at 156 dB. This test simulated , redesigned and upgraded hardware to overcome issues in the unsuccessful GSLV-F06 flight where the lower shroud failed and the separation plane connectors snapped leading to loss of connectivity and subsequent destruction of the vehicle from ground.
ATF has designed and fabricated unique test fixtures for all the GSLV test programmes. Since the test specimen are all unique, suitable fixtures and interfaces to mount the test specimen on the existing specimen trolley at ATF require to be designed, load tested and approved by a combined ATF-VSSC test and evaluation team , before being used for the actual tests.
The ATF team has also significantly contributed to the several Environmental Test Level Committees, Test and Evaluation Committees and other forum in ISRO which decide the acoustic test specifications as well as the test configuration , test sequence and inspection parameters.
Most of the acoustic test programmes mentioned were specifically for the GSLV-D5 mission. The extensive test programmes spread over the last year and a half catered to the redesign and qualification of major subsystems and assemblies of the indigenous cryogenic stage. The team at ATF is proud to be associated with ISRO's GSLV programme and the years of dedication and hard work , sometimes stretching over months with very little personal time has ultimately paid off with the hugely successful flight of the GSLV-D5 and the excellent performance of the indigenous cryogenic engine.
K N Arun Kumar
NAL-Information Pasteboard