Samyukta EW system

fire starter

Senior Member
Jan 14, 2020
Country flag
SAMYUKTA is a Indian mobile integrated electronic warfare system.

The System is fully mobile and is meant for tactical battlefield use. It covers wide range of frequencies and coverage of electromagnetic spectrum is handled by the communication segment and the non-communication segment. Its functions include various ELINT, COMINT and ECM activities.

It is an integrated EW system covering the 1.5MHz–40GHz bandwidth. The system comprises both communications (com) and non-communications (non-com) segments and encompasses 145 wheeled vehicles for housing sensors for electronic surveillance, interception, monitoring, analysis andjamming of all communications and radar signals.and can cover an area of 150 km by70 km.

samyukta is a 145 vehicles based integrated EW system consisting of electronic intelligence (ELINT), communications intelligence (COMINT) combined with electronic countermeasures (ECM) and electronic support measures (ESM) blocks covering both radar and communication frequency bands ranging from 1.5 MHz - 40 GHz i.e all the way from High Frequency (HF) to Millimetre Wave (MMW).

samyukta is capable of intercepting, detecting and classifying pulsed, CW, PRF agile, frequency agile and chirp radars is very much in keeping with the move towards wideband digitally flexible SIGINT systems in the ISR domain to deal with an increasingly congested and complex threat spectrum. The key enabler of wideband jamming capability in the case of samyukta is a multiple beam jammer array antenna with Rotman lens that can handle numerous threats simultaneously in X - Ku bands.

The com segment’s COMINT/ELINT sensors include those for detecting emissions from pulsed airborne synthetic aperture radars (SAR), from the active radars of air-to-surface precision guided-munitions and from radar altimeters, from airborne early warning &control radars, and from terrain-following radars while they are still 150km away.

The three types of active jammers employed include those for wide-band jamming of hostile field artillery radio proximity fuzes over an area of 600,000 square metres, and for simultaneous jamming up to eight hostile X-band airborne radars in azimuth and elevation. SAR radars operating up to 80km away can be jammed, while the X-band monopulse pulse-Doppler airborne radars of combat aircraft can be jammed out to a distance of 50km. The efficient emitting power of the jammer is not less than 580kW. The jammers can be deployed in two patterns: 16 as a battalion, and 6 as a company.

Frequency detection sensitivity is 110-123dB/W, while the frequency measurement accuracy is 1MHz. Bearing accuracy is automatically achieved between 1-3 degrees. The measurement accuracy of temporal pulse parameters 0.05 milli-second at a pulsed length of 0-2-70 milli-seconds. The measurement accuracy of the pulsed repetition period is 0.05 milli-second for a minimal pulse duration of 1 milli-second. Measurement accuracy of the pulse string-repetition period is 0.1 second.

The system’s internal database contains frequency libraries of up to 2,000 types of radars. Another type of jammer operates in the 13,333-17,554MHz frequency bandwidthand can process incoming signals like simple-pulse, quasi-continuous wave (CW) and CW, pulsed chirp-modulated, and phase code-shift keyed with pseudo-random frequency-tuning signals. The input sensitivity of a receiver fitted with frequency determination and reproduction sensors is minus 90, while the radiated power is 600 Watt. The frequency-accurate interference signals reproduction is +/-0.5MHz. Spectrum-matching of the reproduced interference signal is fully automated. Jamming signals emitted include MP-1, MP-2, MP-1 + noise, MP-2 + noise, quasi-CW noise, spot jamming in frequency and range deception signals. The system can also jam GPS signals out to a distance of 70km, and multi-frequency autodyne radio proximity fuzes.

The non-com component’s COMINT/ELINT suites can operate autonomously and are also available in man-portable versions with GIS and digital moving map overlays. They can undertake panoramic frequency-band surveillance and produce time-and-frequency analysis in three formats: gain-frequencypanorama, time-and-frequency panorama, and frequency-intensity panorama.Frequencies are monitored in the 30-18,000MHz bandwidth, and the direction-finding error is not more than 3 degrees. The suites are thus optimized for providing search, intercept, analysis and monitoring capabilities of hostile communications emissions.

Global Defence