shubhamsaikia
New Member
- Joined
- Apr 24, 2012
- Messages
- 354
- Likes
- 158
Liquid fueled rockets have higher specific impulse than solid rockets and are capable of being throttled, shut down, and restarted. Only the combustion chamber of a liquid fueled rocket needs to withstand high combustion pressures and temperatures and they can be regeneratively cooled by the liquid propellant. On vehicles employing turbopumps, the propellant tanks are at very much less pressure than the combustion chamber. For these reasons, most orbital launch vehicles use liquid propellants.Solid fuelled can also be stored indefinetly no need to fuel before
use so it also makes them more mobile.
The primary performance advantage of liquid propellants is due to the oxidizer. Several practical liquid oxidizers (liquid oxygen, nitrogen tetroxide, and hydrogen peroxide) are available which have better specific impulse than the ammonium perchlorate used in most solid rockets, when paired with comparable fuels. These facts have led to the use of hybrid propellants: a storable oxidizer used with a solid fuel, which retain most virtues of both liquids (high ISP) and solids (simplicity).[citation needed] (The newest nitramine solid propellants based on CL-20 (HNIW) can match the performance of NTO/UDMH storable liquid propellants, but cannot be controlled as can the storable liquids.)
While liquid propellants are cheaper than solid propellants, for orbital launchers, the cost savings do not, and historically have not mattered; the cost of the propellant is a very small portion of the overall cost of the rocket.[citation needed] Some propellants, notably Oxygen and Nitrogen, may be able to be collected from the upper atmosphere, and transferred up to low-Earth orbit for use in propellant depots at substantially reduced cost.