A little bit old, but very actual.
Weight Watchers How a team of engineers and a crash diet saved the Joint Strike Fighter.
https://www.airspacemag.com/military-aviation/weight-watchers-13117183/
“There was a belief we could get a lot of the weight,” he says. “But there was a disbelief we could get it all.” One team of independent reviewers anticipated that at best, only two-thirds of the excess weight could be redesigned out of the aircraft.
“You’re not supposed to come in with a white coat on,” says Sheridan, and suddenly his face and voice become stern, presenting the manner he used to get the job done. “You’re supposed to come in with a way to make it happen.”
An important attitude change was realizing that all weight savings—a pound here or a dozen pounds there—were vital. According to the database of incorporated SWAT changes, the average recommendation averaged only six pounds. But by taking “only” out of engineers’ mindsets, more and more ideas were considered.
Lockheed engineers like Santi Bulnes, of F-35 Mission Systems and a SWAT team leader, were given a free hand to redesign. “They said, ‘Forget what equipment is in the way. Draw it like you want it,’ ” he recalls.
Managers that day announced the financial rewards to be paid when weight-loss ideas were accepted: $50 an idea and an equal amount for every pound the idea removed. The bounty was later increased to $100 an idea and $500 per pound.
The mix of candor, pressure, and incentives paid off: Something “did occur to me on Stand Down Day,” LeCompte grins. What occurred to him was to remove a power panel from the right-hand weapons bay by modifying another to handle the work. If realized, the modification could reduce overall weight by more than 20 pounds.
Four months later, LeCompte was called to a SWAT board meeting, where senior Lockheed officers said his idea would be included in all three variants. They awarded him $13,000. LeCompte used the money to close on his first home.
He says he also felt the satisfaction of directly contributing to the final design of the 21st century’s first new fighter, which, thanks to him, has a reconfigured power panel, as well as three other improvements he suggested, each of which removed about a pound.
By the end of February 2006, Lockheed Martin had paid out more than $1.2 million to employees for ideas. The cost is considered minimal compared to the benefits, says Greg Henderson, the inaugural director of the F-35’s Weight Management and Control office at Lockheed.
“Many of the graybeards said, ‘You’re not going to be able to hold it,’ ” adds Henderson, now president of the Society of Automotive Engineers. “But between October 2004 and now [May 2006], we’ve held that flat. It’s historically unprecedented.”
Indeed, skepticism still lingers within the Joint Program Office. After all, it is the job of that office to remain alert to problems. “It was successful in that, for now, we kept the weight off,” says Enewold. “My parting shot is that I’m cautiously optimistic the weight will stay out.”
While Lockheed Martin engineers struggled to trim the F-35’s weight, they also fought to protect the airplane’s performance. However, some concessions had to be made, and Art Sheridan says that members of his team reluctantly approached the defense department with requests to relax some requirements during the redesign. Sheridan calls it “a last resort.” Until engineers can prove why their efforts at another solution failed, he says, a suggestion to diminish performance is bound to go nowhere.
At SWAT’s request, plans for the F-35B to carry a pair of 2,000-pound bombs internally were returned to the aircraft’s original specification of two 1,000-pound bombs. The requirement to carry two internal missiles alongside the bombs went unchanged.
So how does an engineer ask the Pentagon to be flexible? First, keep the military in the loop. Show a graph with the progress so far. Then, according to Sheridan, present the stark truth: “You can look at this requirement, or would you rather not have the program?”
Military customers fretted that the airplane’s maintenance and logistics demands would increase due to the redesign. In response, SWAT included the impact on these parameters in its database of design changes. “We didn’t have those constraints,” Sheridan says. “But we definitely kept an eye on them…. [The JPO] had fear we were going to trash supportability.”
A major blow to the JSF manufacturing concept, leading to an increase in production costs, was the abandonment of “quick-mate joints.” The idea was to attach interlocking parts to individual components that would make the final assembly of the fuselage, wings, and engine easy, like snapping and soldering jigsaw puzzle pieces. But the interfaces drove the weight up by about 1,000 pounds, so a traditional, time-consuming joining system was adopted. All three F-35 variants lost their quick-mate joints to preserve production commonality.
The JSF team had earlier hatched a new idea to cut cost—use “cousin parts” instead of the sometimes heavier common ones. The concept was going to be applied to trim weight as well as cost.
A cousin part is manufactured using the same machine, but the computational design information is altered to produce a part unique to a variant. If a part is designed to handle certain stresses arising only during a carrier landing, it can be remade with the same tool for the conventional takeoff-and-landing variant, with only a minor cost increase. A commercially available part can be shaved to save room, offering, in some cases, a direct route for a hose rather than a circuitous one. Less hose equals less weight. Unique items cost more to manufacture and to replace, but the weight savings sometimes necessitated the higher cost.
Enewold says the production cost of F-35s has risen slightly due to implementations of SWAT plans. The effect on supportability cost is yet to be seen.
In eight months, the Lockheed engineers cut a total of 2,700 pounds from the F-35B. The effort also trimmed 1,300 pounds from the other variants. Comfortable with that legacy, SWAT faded, with accolades, into company history, but an estimated 20 ideas a week still turn up in the Weight Improvement Program office.
Design and assembly changes, mostly related to the SWAT recommendations, have cost about $4.8 billion—part of a $6.2 billion replanning to accommodate the additional design cycle required to make the improvements. The replanning forced an 18-month slip in F-35 deliveries. According to a 2006 Government Accountability Office report, since inception, the development costs of the JSF program have increased 84 percent and its timeline slipped by about five years. The STOVL’s final delivery deadline has been extended two years, to 2012.
“Weight’s going to be a focus item for this program for the rest of its life,” notes Enewold. He adds that until flight tests are completed, he will worry that the diet has removed some of the aircraft’s “good weight”—the structure that makes the airplane durable. A former Navy pilot, Enewold knows well the punishment an aircraft suffers during carrier operations.
The future of the F-35 is clouded by political battles, international diplomacy, the availability of titanium, a test schedule that overlaps production timetables, and U.S. government worries over transfer of technology to foreigners. But with SWAT, the program has a chance to come to fruition. Without that team, the sight of an F-35B hovering over a carrier deck would have remained the creation of a company artist, relegated to a poster decorating a corporate conference room.