- Joined
- Apr 29, 2015
- Messages
- 18,416
- Likes
- 56,946
Last edited:
India's first dedicated satellite, AstroSat, which was launched by ISRO on Sept 28, 2015, has observed for the very first time rapid variability of high energy (particularly >20keV) X-ray emission from a black hole system.
In black hole systems, mass from a regular star gets stripped off and falls towards the black hole forming a disk around the black hole. The temperature of the disk is more than ten million degrees and hence the system emits X-rays. The total power coming out of these systems is often more than ten thousand times that of the sun. Yet these systems vary rapidly in time-scales much less than a second.
Astronomers have always been puzzled by the enigmatic black hole system called GRS 1915+105. It shows many different kinds of behavior and its X-ray emission sometimes oscillates nearly periodically (hence these oscillations are termed as Quasi-period oscillations) on time-scale of a few hundred milli-seconds. Astronomers believe that these oscillations may occur because the inner part of the disk surrounding the black hole precesses (i.e. wobbles) because the spinning black hole drags the space-time fabric around it as predicted by Einstein's General theory of relativity.
While these oscillations have been known and studied earlier in low energy X-rays using the American satellite Rossi X-ray Timing Experiment, they have now been detected and characterized in high energy X-rays by the Large Area X-ray Proportional Counter (LAXPC) on board the ISRO space mission, AstroSat. Observing the phenomenon in high energy X-rays is critical since the higher energy photons are expected to be emitted closer to the black hole than the low energy ones. The highly sensitive instrument, LAXPC, also measured the arrival time difference between the high and low energy X-rays (which is of the order of tens of milli-seconds) providing direct clues to the geometry and dynamic behavior of the gas swirling round a spinning black hole.
All this was obtained by just nine orbits or a few hours of AstroSat observation of the source and no other observatory at present (or earlier) is capable of achieving these results. After careful performance verification of the instruments on board AstroSat, Indian Scientists are now using AstroSat to unravel the mysteries of the Universe and this finding is just the beginning of a large number of such discoveries that AstroSat is expected to make. This marks a new era for Indian Astronomy with AstroSat being a front-line dedicated astronomy satellite.
The findings have been reported by a team led by Prof. J. S. Yadav and other scientists from the Tata institute of Fundamental Research (TIFR) along with astronomers from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), University of Mumbai and the Raman Research Institute (RRI). Their report will be published in the Astrophysical Journal.
The LAXPC instrument was developed indigenously at the Tata Institute of Fundamental Research (TIFR) Mumbai.
SSM First light of GRS 1915+105 - a Black Hole - on 14th October 2015During the first week of CZTI operation, the supernova remnant Crab Nebula and the black hole source Cyg X-1 were monitored. The Crab Nebula can be treated as a standard candle and it was used as a calibrator for timing and imaging, and also to measure the response of the instrument at large off-axis angles. One of the projected objectives of CZTI is wide-angle monitoring of the sky in hard X-ray band to record strange and rare events like Gamma-ray Bursts (GRB).
Luckily, on the first day of operation of CZTI, the Swift satellite reported the detection of a Gamma-ray burst, at 09:55:01 UT, named GRB 151006A. We were eager to know whether CZTI was operational at that time (i.e. outside SAA) and if the GRB was in a favourable condition to be observed. A quick calculation showed that this GRB was 60.7 degrees away from the CZTI pointing direction and, at this angle, CZTI should be sensitive to this GRB at energies greater than about 60 keV. The instrument time is yet to be calibrated precisely as the data analysis pipe-line is yet to be streamlined; still a band of youngsters delved into the voluminous data to extract the precious information about this messenger of a blast from the extremities of the universe: GRB 151006A.
Yes, there it is: the GRB made its presence felt as an increase in the recorded counts, shown in Figure 1. At higher energies (above 100 keV), the shielding material at the side of the CZTI is designed to be more transparent and one can see a significant and sharp jump in the counts above 100 keV during the GRB time.
One of the much anticipated properties of CZTI is its ability to identify X-rays depending on the method by which they interact with the detector. If it is by inelastic scattering (called the Compton scattering), they should obey certain scattering principles; and when all the recorded events were subjected to the Compton scattering criteria, there indeed was a significant jump in the count rate. In Figure 2, the so-called `Compton’ events (that is, double events satisfying all the requirements of the theoretical expectations of Compton scattering) are plotted as a function of time, the reference time (time zero) being the trigger time of the GRB reported by the Swift satellite.
This information was flashed to the scientific community through GCN (the Gamma-ray Coordinates Network maintained by NASA), and the resultant GCN circular is shown in Figure 3.
Gamma-ray bursts - blasts from the past: Gamma-ray bursts are, as the name suggests, bursts of gamma-rays, coming from apparently random directions in the sky. They were discovered serendipitously in the sixties by the American Vela satellites designed to detect possible surreptitious nuclear weapon tests by the then Soviet Union. For long, they remained a mystery, but in the late ninties the Italian-Dutch satellite Beppo-SAX managed to measure longer wavelength lingering radiations from them in soft X-rays (called the after-glows) and identify them with far away galaxies. Currently, there are two dedicated satellites measuring their properties: the Swift and the Fermi satellites. Thousands of GRBs have been detected and some of them are identified to be so far away that they originated when the universe was less than a billion years old (the current age of the universe is 13 billion years).
So, what is the big deal of CZTI detecting one more GRB ?
In spite of the vast amount of data available, GRBs still remain a mystery. One class of GRBs called the long GRBs are associated with newly formed black holes while another class, called the short GRBs, are believed to be the tell-tale signs of the merger of two compact objects. There is also an emerging school of thought which postulates that GRBs originate from neutron stars with extremely high magnetic field, called the magnetars. The current debate about the origin of GRBs is accentuated by the fact that the characteristics of the burst of gamma-rays are ill understood and the radiation mechanisms responsible for the emission is not quantified.
The Swift satellite, as the name suggests, is swift in pointing itself towards new GRBs and locating the afterglows: it has limited response above 150 keV and it is unable to fix the spectral parameter like the peak energy for many GRBs with `hard’ spectrum. A simultaneous observation with the CZTI, which is sensitive upto 250 keV and has the best spectral capability, ever, for GRB studies in the 80 – 250 keV region, will certainly help in measuring the spectral parameters. The Fermi satellite, on the other hand, is very sensitive to higher energy emission and detects a lot of short-hard GRBs, but it has very limited localisation capability. CZTI can pitch in for short-hard GRBs and localise them much better than Fermi. If the spectral and localisation capabilities of CZTI can be demonstrated by a detailed analysis of GRB 151006A, it will enrich the GRB science by providing spectral properties for long GRBs and localisation of short GRBs (it is estimated that 50 to 100 GRBs would be detected by CZTI in a year).
But, the biggest deal, however, is the mouth-watering profile shown in Figure 2. CZTI, as designed, is sensitive to detect Compton scattered events and a demostration of this capability in GRB 151006A is extremely significant for the following reason: the Compton scattering process is sensitive to the polarisation of the incident X-rays and if CZTI is sensitive to Compton scattering, then it is surely sensitive to the polarisation characteristics. Hence, for brighter GRBs, a precise value of polarisation amplitude should be measurable (this GRB has about 500 counts detected as Compton scattered events and it is estimated that one needs at least 2000 counts to make a reliable polarisation measurement). Though polarisation has been measured in a few GRBs, this is the first time ever that spectral, timing, and polarisation properties of GRBs in hard X-rays will be measured simultaneously and it will have far reaching implications in the understanding of the radiation mechanisms of GRBs.
Meanwhile, as they say: During the first week of CZTI observations, CZTI measured the pulse period of Crab Pulsar (shown in Figure 4), demonstrating the timing capability of the instrument.
Fig 4: Power spectrum of Crab observations. Crab pulsar frequency with its harmonics are clearly seen at a frequency corresponding to 29.65 Hz and its multiples.
Following this, SSM was maneuvered to a field that contains the enigmatic Galactic Black Hole source GRS 1915+105. Even with many challenges on mission operations, AstroSat was oriented to the required field with GRS 1915+105 in the FOV of SSM on October 14th, 2015. THANKS to mission operations team!
The particular field was crowded with few other bright sources (eg. Cyg X-1, Cyg X-2, Ser X-1), while GRS 1915+105 was the strongest source with intensity ~2 Crab. GRS 1915+05 also displays very peculiar, but ‘structured’ X-ray variability known as ‘class’.
Figure 3: AstroSat – SSM First light of the enigmatic Black Hole GRS 1915 + 105
AstroSat-first light from Galactic Black Hole GRS 1915+105 as observed by SSM is shown in figure 3. A quick look of the variability profile of the light curve matches well with one of the earlier observations of the source with NASA's Rossi X-ray Timing Explorer (RXTE) satellite as shown in the figure. More detailed analysis results will follow.
The Astronomer's Telegram: We're Sorry!
www.astronomerstelegram.org
This observation is reported as a “Astronomers' Telegram” ATel #8185. The link for the ATel is:
SSM – Indication of a M - class Solar Flare - on 16th October 2015 During a scheduled flux calibration observation with SSM pointed to Crab, during a specific part of the orbit, at ~6:12 UT, October 16th 2015, SSM (all three detectors) recorded a sudden upsurge in counts – with a rise time of ~2 minutes and a decay time of ~18 minutes as shown in figure 4.
Figure 4: SSM observations with Earth in its FOV on October 16, 2015 during a M-class Solar Flare at 6:10 UT
Figure 5: GOES observations of M-class Solar flare at 6:10 UT on 16th October, 2015.
This occurred when the pointing of the SSM cameras was facing the Earth such that the FOVs of all the three cameras had Earth within. The Sun was almost 180 degrees away. . The upsurge in counts was understood to be X-rays due to a M-class Solar flare, which was confirmed with the time of occurrence, type of flare etc. from the US satellite “GOES” data. The correlation of the time of detection of upsurge of counts in SSM and the time of occurrence of the flare can be observed from both the figures - 4 and 5.
Astronomers, using data from India’s Giant Metrewave Radio Telescope (GMRT), have discovered two of the most powerful phenomena in the universe – a supermassive black hole and the collision of giant galaxy clusters about two billion light years from Earth.
The two phenomenon have combined to create a stupendous cosmic particle accelerator, researchers said.
By combining data from NASA’s Chandra X-ray Observatory, the Giant Metrewave Radio Telescope (GMRT) in Pune and other telescopes, researchers found what happens when matter ejected by a giant black hole is swept up in the merger of two enormous galaxy clusters.
“We have seen each of these spectacular phenomena separately in many places,” said Reinout van Weeren of the Harvard-Smithsonian Centre for Astrophysics (CfA) in the US, who led the study.
“This is the first time, however, that we see them clearly linked together in the same system,” said van Weeren. This cosmic double whammy is found in a pair of colliding galaxy clusters called Abell 3411 and Abell 3412 located about two billion light years from Earth.
The two clusters are both very massive, each weighing about a quadrillion – or a million billion – times the mass of the Sun.
The comet-shaped appearance of the X-rays detected by Chandra is produced by hot gas from one cluster plowing through the hot gas of the other cluster. Optical data from the Keck Observatory and Japan’s Subaru telescope, both on Mauna Kea, Hawaii, detected the galaxies in each cluster.
First, at least one spinning, supermassive black hole in one of the galaxy clusters produced a rotating, tightly-wound magnetic funnel.
The powerful electromagnetic fields associated with this structure have accelerated some of the inflowing gas away from the vicinity of the black hole in the form of an energetic, high-speed jet.
These accelerated particles in the jet were accelerated again when they encountered colossal shock waves – cosmic versions of sonic booms generated by supersonic aircraft -produced by the collision of the massive gas clouds associated with the galaxy clusters.
“It’s almost like launching a rocket into low-Earth orbit and then getting shot out of the Solar System by a second rocket blast,” said Felipe Andrade-Santos, also of the CfA. “These particles are among the most energetic particles observed in the universe, thanks to the double injection of energy,” said Andrade-Santos.
This discovery solves a long-standing mystery in galaxy cluster research about the origin of beautiful swirls of radio emission stretching for millions of light years, detected in Abell 3411 and Abell 3412 with the GMRT.
The team determined that as the shock waves travel across the cluster for hundreds of millions of years, the doubly accelerated particles produce giant swirls of radio emission. The study appears in the journal Nature Astronomy.
An Open Star Cluster consists of hundreds to thousands of stars, which are loosely bound. They are formed most likely from a single gas cloud, and are therefore roughly of same age. Open clusters and particularly old open clusters therefore are ideal sites to study the stellar evolution for both single and binary stars. Most stars evolve away from the main sequence once their hydrogen burning phase is over. The turn over point of the Hertzsprung – Russell (HR) diagram of an open cluster is indicative of its age.
Blue Straggler Stars (BSS) are members of old clusters that are brighter and bluer than stars on the upper main sequence. They appear to 'extend' the main sequence in a HR diagram of the cluster and appear as if they are 'younger' stars. They are termed stragglers because they do not move away from the main sequence like the other stars in the same cluster.
NGC-188 is a well-studied old open cluster with an estimated age of 7 Gyr (Billion year, astronomically known as Giga Year- Gyr) and exhibits high metallicity. It is located about 5000 light years away and has about 1050 stars as its members with 20 BSSs confirmed. WOCS-5885, most likely a member of NGC-188 (with a high probability of 53 to 80% quoted in literature), was one of the 3 objects identified with exceptionally blue color. Various classifications -a BSS or a sub-dwarf or a binary with a red giant and a pre-white dwarf to name a few- were attributed to this object, because its spectrum did not match with any single identification. This could only be resolved if the hot (UV, blue) and the cool (red, IR) part of the spectrum of this object could be fitted together with spectral models of stars. This had been done with observations from space (GALEX, UIT, UVOT, SPITZER, WISE) and several ground based observatories, spanning the IR, optical and UV bands.
The UV band observations from the Ultraviolet Imaging Telescope (UVIT) on ASTROSAT have provided additional points in the Spectral Energy Distribution (SED) thus resulting in a much better spectral fit over the wavelength range of 0.15 µm to 7.8 µm. With this data set, WOCS-5885 has been classified as a binary consisting of a BSS and a hot star which is either a post Asymptotic Giant Branch or Horizontal branch (post-AGB/HB) star.
The UVIT contains two 38-cm telescopes; one for the far-ultraviolet (FUV) region, the other for the near-ultraviolet (NUV) and visible (VIS) regions. These are divided using a dichroic mirror for beam splitting. UVIT is primarily an imaging instrument, simultaneously generating images in the FUV, NUV and VIS channels over a 28 arcmin diameter circular field. Each channel can be divided into smaller pass bands using a selectable set of filters.
UVIT observed NGC-188 both as a first light object and for regular calibration. The observations have been done in both NUV and FUV filters in the wavelength band of 0.3 to 0.15 µm. With these observations, it is found that the SED can only be fit with spectra consisting of 2 stars. The cooler star is found to be a BSS with a temperature of 6,000+150 K, and the temperature of the hotter star is 17,000+500 K. The estimated size and luminosity of the hotter star rule out a white-dwarf or a sub-dwarf classification and hence it is proposed that it could be a post AGB/HB star. If the membership of WOCS-5885 to NGC-188 is confirmed, it could be a rare BSS + post AGB/HB binary, the first of its kind to be identified (for which probability is high) in an open cluster. This system therefore provides a great opportunity to constrain theories of BSS formation via mass transfer.
For details:Thus, observations from the UVIT were used to solve the puzzle of a star WOCS-5885 which appeared as a single star but whose spectra did not match with this identity.
Subramaniam Annapurni et al., A Hot Companion to a Blue Straggler in NGC-188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT-The Astrophysical Journal Letters, Volume 833, No. 2, 19 December 2016.
Scientists say the smaller star, also called a "blue straggler", feeds off its companion star by sucking out its mass and energy, causing its eventual death.
"The most popular explanation is that these are binary systems in which the smaller star sucks material out of the bigger companion star to become a blue straggler, and hence is called a vampire star.
"The small star becomes bigger, hotter and bluer, which gives it the appearance of being young, while the ageing companion burns out and collapses to a stellar remnant," said Annapurni Subramaniam, a Professor at the Indian Institute of Astrophysics.
Though this phenomenon is not unheard of, the observation of the entire process through the telescope will provide insights that will help scientists in studying the formation of 'blue straggler' stars.
This discovery also highlights the capabilities of the telescopes on ASTROSAT, a dedicated space observatory satellite launched in September 2015.
The study was recently published in Astrophysical Journal Letters by a team of scientists from IIA, Inter-University Centre of Astronomy and Astrophysics (IUCAA), Tata Institute of Fundamental Research (TIFR), Indian Space Research Organisation (ISRO) and the Canadian Space Agency (CSA).
Scientists are now looking to understand the chemical composition of the 'blue straggler' using high resolution spectroscopy, which could reveal more about the evolution of these peculiar celestial objects.
The stars are part of a "cluster" called NGC 188 formed some 6 billion years ago, and are much older than the sun, which is believed to have come into existence nearly 4.5 billion years ago.
"As the sucked up material from the ageing star will be polluted with material processed within the ageing star, this blue straggler will throw light on the kind of nuclear processing that happens in ageing stars", Subramaniam, also the Calibration Scientist of UVIT on board the ASTROSAT, said.
"The data from six filters of UVIT were used to estimate the precise temperature of the companion star, its size and brightness. This has been possible only due to the excellent capability of the UVIT telescope," Subramaniam added.
The UVIT is made of twin telescopes with an effective diameter of 375mm each and records images in the Far UV, Near UV and visible frequencies. UVIT provides very sharp UV images over a field of view as large as the Moon.
"The companion (the bigger star) is still going through ageing and has not yet become a remnant. It is also hot and large. Therefore it appears very bright in ultraviolet image, but not so bright in an image taken with an optical telescope looking at visible light," she said.
This is why previous studies of the 'blue straggler' in the optical range could not detect the companion. "This pair thus becomes a rare sample to study the details of the formation of blue straggler stars," Subramaniam added.
The purpose of ASTROSAT is to understand high energy processes in binary star systems containing neutron stars and black holes, estimate magnetic fields of neutron stars, study star birth regions and high energy processes in star systems lying beyond our galaxy.
It is also tasked to detect new briefly bright X-ray sources in the sky and perform a limited deep field survey of the universe in the Ultraviolet region.
Apart from the UVIT, the ASTROSAT also includes a Large Area X-ray Proportional Counter (LAXPC), a Soft X-ray Telescope (SXT), a Cadmium Zinc Telluride Imager (CZTI) and a Scanning Sky Monitor (SSM).
These instruments observe the sky for electro-magnetic radiations in the visible, ultraviolet and X-ray frequency ranges coming from distant celestial sources.
The Ligo scientific collaboration has discovered the third confirmed gravitational wave event, GW170104. Several Indian and international astronomy groups searched for corresponding electromagnetic signals in the sky. The Cadmium Zinc Telluride Imager (CZTI) on AstroSat conducted the most sensitive search for short duration X-ray flashes associated with this event, but did not find anything. The Hawaii-based ATLAS group found a transient optical source, which was thought to be related to GW170104.
The CZTI team, in collaboration with the international GROWTH collaboration, studied this transient extensively, and proved that it was not the counterpart of GW170104. Instead, it was a Gamma ray burst event caused by the explosive death of a massive star in a galaxy several billion light years away giving birth to a new black hole.
https://www.isro.gov.in/update/17-o...butes-to-saga-of-gravitational-wave-astronomyAstroSat contributes to the saga of Gravitational Wave Astronomy
On August 17, 2017, scientists seeking the holy grail of gravitational wave (GW) astronomy struck gold. The elusive and long sought after GW signals from merging binary neutron stars were found and multi-messenger observations provided tell-tale signs of this merger to clinch the issue without any qualms. Two of the GW detectors in the US picked up the signal and a third, working in Europe, confirmed it. Several of the satellites in the sky detected signals from this event across various bands of the electromagnetic spectrum, and a vast array of optical and radio telescopes worldwidetrained their vision into this new phenomenon, finding a variety of corroborating signals.
The AstroSat scientists, who pitched in with their efforts, today stand shoulder to shoulder with a few thousand scientists across the globe (including three Nobel Prize winners and a few scores of other Indian scientists) to announce this momentous discovery and an `open sesame’ moment of staring at the huge cache of scientific discovery that this new era of`multi-messenger, time-domain astronomy’ opens up.
Gravitational Wave Astronomy: the last frontier
Any accelerated electronic charge emits electromgnetic radiation: scientists routinely use this to generate and send electromagnetic waves like radio waves, optical light, and X-rays. Any moving mass disturbs the space time and a `quadropole’ moment in the moving mass should generate gravitational waves: theorised Albert Einstein a hundred years ago. Einstein’s words are treated as Veda Vakya or Gospel Truth, and astronomers routinely use this to understand the dynamics of compact large masses in the cosmos. Russell A. Hulse and Joseph H. Taylor, Jr discovered two radio pulsars going around each other, slowly hurtling towards each other, and they invoked Einstein’s gravitational wave theory to understand their behavour: they were duly awarded a Nobel Prize for this work. This opens up an interesting question-shouldn’t astronomers, who use every branch of electromagnetic radiation from radio to gamma-rays to prise open the secrets of the Universe, use gravitational waves to understand exotic features of the cosmos- like the ripples of the Big Bang or merging of black holes when galaxies collide ?
Well, they should,but the catch lies in the fact that the gravitational force is extremely weaker than the electromagnetic force, and common sense deems that even the most sensitive detectors that humans can build cannot detect the most exotic gravitaional wave sources that we can imagine. However, during the past few decades, a huge number of dedicated scientists have built the most sophisticated detectors capable of measuring infinitesimal movement of mass corresponding to a tiny fraction of a nanometer in kilmoter sized objects so that they would be sensitive to the gravitational waves from outer space. Year after year, they kept looking for signs of merging neutron stars, but the quest was in vain !
Mother Nature usually likes to keep surprises up her sleeve! When the GW detectors with highly improved sensitivity were switched ON in 2015, they found something: not a neutron star-neutron star merger, but a totally unexpected event of two massive black holes merging and spewing out energy equivalent to the complete burning out of mass corresponding to two Suns. This is indeed a momentous discovery, and the architects of this humongous human effort, Kip Thorne, Rainer Weiss, and Barry Barish, duly got this year’s Nobel Prize.
What about the elusive case of the merger of two neutron stars anticipated from the discovery of Messers Hulse and Taylor?During the past two years, four GW events were discovered, however, they were all due to mergers of black holes. The problem with merging black holes is that they are, as apparent from the name, `black’;i.e., apart from the GW events,there are no tell tale signs of the merger in any other branch of electromagnetic radiation. So, we cannot determinewhere they are coming from, or what are their progenitors. This is not the case for neutron star mergers. It was firmly believed that when GW events are discovered from neutron star mergers, they would be accompanied by huge amounts of electromagnetic radiation, which will help us pin down the sources of these events.
The whole scientific community was eagerly waiting for this much anticipated event.
CZT Imager of AstroSat pitches in
AstroSat was launched on September 28, 2015 and the CZT Imager (CZTI) instrument of AstroSat was the first instrument to be made operational. On October 6, 2015, the first day of operation, CZTI detected a gamma-ray burst (GRB) and proved to be an efficient GRB detector. The scientists working with the CZTI data realised that it would be a wonderful instrument to detectany gamma-ray events accompanying the GW sources.
The problem with detecting such gamma-ray events is that they are rare, unpredictable, and can come from any direction in the sky. Hence, the detectors need to have all sky sensitivity, and generally, there is a trade off in their observing capabilities. Currently, there are three sensitive operating GRB monitors, along with a few more less sensitive detectors, each having their own capabilities and limitations. The most sensitive GRB monitor currently operating is the Swift satellite, however, it can observe only one tenth of the sky at any given time. CZTI and the Fermi satellite, on the other hand, are sensitive to much larger regions in the sky, but have very limited capability to localise these events. The anti-coincidence shield of the INTEGRAL satellite, too, can act as a GRB monitor.
Each of these instruments played their part in the race to detect gamma-ray signals accompanying the GW events. During the very first GW event on September 14, 2015 (before the launch of AstroSat), Fermi claimed that it haddetected a GRB like event within 0.4 s of the GW event. Observations from theINTEGRAL satellite, however, disagreed: the consensus was that this could be some unrelated spike in the background. During another GW event detected in January 2017, optical astronomers saw, the very next day of the event, some source gradually diminishing in brightness. Could this be the tell-tale signs of something happening in the GW source? CZTI chipped in with a firm No! It had detected a GRB, 21 hours after the GW event. The fading optical source was shown to be this GRB, unrelated to the GW event.
Aug 17, 2017: a red letter day
On August 17, 2017, the much anticipated event occurred.
The GW detectors in US registered a very long series of signals, or `chirps’, closely resembling what the scientists have simulated for decades to be coming from neutron star coalescence. Even before they could announce this discovery, the Fermi satellite had detected a GRB at the same time: in fact within a couple of seconds of the GW event. Could this also be an unrelated background fluctuation event? Very unlikely, because, at exactly the same time, the anti-coincidence shield in the INTEGRAL satellite had also detected this GRB. What about Swift and CZTI? They didn’t detect any! The event should probably be outside the narrow field of view of Swift. What about CZTI? It was active and operating and the GRB should have been detected. The only way to reconcile was to assume that the source was blocked by the Earth: this helped to narrow down the possible source regions of the GW event.
Soon, the GW detectors from Europe too pitched in, and the region of the sky responsible for the GW event and GRB was narrowed down to a small region. Optical telescopes around the world scanned each and every galaxy in this region and, lo and behold, there indeed was a bright optical object, not seen before, near a galaxy called NGC 4993.
The rest, as they say, is history. Soon, infra-red and ultraviolet emissions were seen from this source. Nine days later, an X-ray source was detected, and fifteen days later, radio emission was also observed. From such vast multi-wavelength data, the physics of colliding and merging neutron stars were studied in depth. An exciting find is that the material ejected in the event is rich in heavy elements, so much so that, colliding neutron stars can account for the entire supply of precious metals, like gold, platinum and silver, in the universe. Production of these elements have been difficult to understand, and now the source has been found!
The story of GW170817 bears testimony to the amazing outcome possible when all the world’s best instruments are combined for a single purpose. The collaborative efforts of a number of teams worldwide lends an added credibility to this exciting and substantial discovery and ushers in a new era in multi-messenger, time-domain astronomy!
Scientific curiosity: never satiated
The GW detectors are taking a year off to return with an improved sensitivity. Neutron star merger events and the accompanying `kilonova’ should be fairly common observations during the next run. There should be more of black hole merger events as well. Scientists are already dreaming about the rich future harvests:
Can we get any tell-tale signatures of black hole mergers to identify where they are coming from? Perhaps more sensitive all sky detectors would help with an answer.
Can these events be used as a tool for distance measurement to refine cosmology? A massive collaboration between GW theorists and kilonova observers should be able to do it.
Can we learn anything about the regions close to black hole? Possible.
Are there some strange stars among the neutron stars? Certainly more such objects will tell us. Finally, has Mother Nature more surprises up her sleeve? Only the future will tell us!
What next? Significant next steps will involve making detectors more sensitive, improving localisation capability and most importantly, continued collaboration of observatories worldwide spanning all electromagnetic bands, neutrinos and gravitational waves.
In the Indian space science context, the capability of CZTI would certainly be improved through better algorithms and simulations: it should be possible to independently confirm and localise gamma-ray events for future GW associations. Perhaps, even a much improved CZTI like all sky monitor could be designed and flown!
Multi-messenger studies of GW170817 incorporating the contribution of AstroSat CZTI are published in the journals Science and Astrophysical Journal Letters.
Papers
- Illuminating gravitational waves: A concordant picture of photons from a neutron star merger - Science 10.1126/science.aap9455 (2017).
- Multi-messenger Observations of a Binary Neutron Star Merger - The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20
AstroSat, India’s first space observatory class satellite dedicated to Astronomy, was launched onboard PSLV from Satish Dhawan Space Centre SHAR, Sriharikota on September 28, 2015 into a low earth orbit. After the first six months of calibration and verification phase, the observatory started observing cosmos in multi-wavelength spanning a wide range from near Ultraviolet (UV) to High Energy X- rays.
AstroSat carries a total of five scientific payloads, namely, Ultra-Violet Imaging Telescope (UVIT), Soft X-ray Telescope (SXT), Large Area X-ray Proportional Counter (LAXPC), Cadmium Zinc Telluride Imager (CZTi) and Scanning Sky Monitor (SSM). AstroSat has provided good spatial resolution images in UV over half degree field of view and has a large collecting area at High Energy X-rays (LAXPC). Except for SSM, other four payloads onboard AstroSat are co-aligned and capable of performing simultaneous observations of astronomical sources. The observations were carried out based on the proposals received from users in India and abroad. AstroSat has observed more than 750 sources till September 2018. For the proposal cycle starting from October 2018, around 150 of them are approved and scheduled for observations.
From the beginning, AstroSat is providing good results. Data from AstroSat has resulted in close-to 100 publications in refereed journals, and this number is expected to increase with the data now made open to public on September 26, 2018. (Archival Data of AstroSat released).
AstroSat has provided several new and exciting results like
Solving the decade old puzzle of a cool red star but bright in UV, by identifying it as a binary
X-ray polarisation from Crab nebula
Detection of a coronal explosion on the nearest planet-hosting star (simultaneously observed by NASA’s Chandra X-ray observatory and Hubble Space Telescope)
Black holes, while fascinating, aren’t a new discovery. But, a black hole spinning at one of the highest speeds ever is a whole other story. Especially when there have only ever been four others like it.
India’s first dedicated astronomy satellite, the AstroSat spotted a black hole in the binary star system called 4U 1630-47 that’s spinning close to the maximum speed possible. NASA’s Chandra X-Ray Observatory confirmed the high spin rate.
This particular ‘monster black hole’ is spinning very close to the limit set by Albert Einstein’s theory of relativity according to Rodrigo Nemmen, the lead author on the research paper. That means anything that’s being pulled into the black hole is being pulled in at the speed of light.
Currently, scientists only have two ways of measuring black holes – either by their mass or by their spin rate. And, a spin rate can be anywhere between 0 and 1. This black hole was spinning at the rate of 0.9.
Einstein’s theory further implies that if a black hole spinning that fast, then it is capable of making space itself rotate.
In fact, if the conditions around black holes are hypothesised to be correct, then the high spin rate couple with the gaseous elements entering the black hole and high temperatures, could be the key to understanding how galaxies are formed.
Including the black hole discovered by the AstroSat, there are only five black holes have accurately measured high spin rates. Even if you’re not taking spin rates into account, this black hole of one of only 20 others that have been spotted in the Milky Way Galaxy.
The Indian Space Research Organisation’s (ISRO) AstroSat along with the National Aeronautics and Space Administration’s (NASA) Chandra X-Ray Observatory have confirmed the speed of the spinning black hole.
The study was conducted by researchers from multiple institutions led by the Tata Institute of Fundamental Research (TIFR) and has been accepted for publication in The Astrophysical Journal.
Pune
: Indian astrophysicists have discovered large ultraviolet lobes and jets, hurled out from a dying star, using data from AstroSat, the space observatory launched by the Indian Space Research Organisation (ISRO) in 2015. The discovery has been featured as the AstroSat Picture of the Month (APOM) for October.
Kameswara Rao of the Indian Institute of Astrophysics and his collaborators used the Ultra-Violet Imaging Telescope (UVIT) on board AstroSat to study a planetary nebula called NGC 6302, popularly called the Butterfly Nebula. A planetary nebula is formed when a star like our Sun – or a few times heavier – is in its dying days. The term, a misnomer now, was coined by astronomers in the 19th century since the nebula looked like planets through their telescopes.
“When hydrogen and helium fuel that kept the star shining gets exhausted, the star expands in size and becomes a red giant star,” Rao explained. “Such stars shed most of their outer layers which expands outwards, and the inner core, made of carbon and oxygen, shrinks further and becomes hotter. This hot core shines brightly in the ultraviolet, and ionises the expanding gas. This glowing ionised gas is what is seen as a planetary nebula.”
Sriram Krishna, a student of Rao, spent many hours analysing the data from the Butterfly Nebula. “Its central star is one of the hottest that we know, at 220,000 degrees celsius. The name itself comes from the shape of the two lobes of expanding gas that look like the wings of a butterfly,” he said.
One might expect a planetary nebula to be spherical, but it actually exhibits a range of complicated structures. “We used the UVIT on AstroSat to make four images of the nebula, each in different ultraviolet ‘colours’, or filters. The image made with the filter centred at 160.8 nm, called F169M, had a surprise in store for us,” said Sriram.
Astronomers have studied the two lobes of the nebula for many years through visible light images. They expect that the more energetic ultraviolet light would be emitted closer to the central star, where the hot stellar wind hits the slowly expanding gas. “However, we discovered that the lobes imaged with the F169M filter in ultraviolet were about three times larger than the size of the lobes imaged in visible light,” according to Sriram. After careful analysis, their study concluded that this ultraviolet emission must be due to cold molecular hydrogen gas outside the visible lobes, which had gone undetected so far.
“Our discovery points to an unseen companion star in an orbit with the central star,” said Firoza Sutaria, one of the coauthors. In addition, researchers also discovered two faint jets blasting out from the centre at almost right angles to the new ultraviolet lobes.
The team led by Rao recently discovered a large ultraviolet halo in yet another planetary nebula using AstroSat, and will be looking at more such objects in the future. They hope that such discoveries may provide the answer to the age-old puzzle of the missing mass problem in planetary nebulae.
This discovery was made possible because of the uniqueness of UVIT. “Of all the ultraviolet telescopes in space, UVIT is special in its ability to image a large field of view with a very high resolution, or detail”, said V. Girish of ISRO.
“This ability, coupled with a novel image analysis software that we had developed, led us to this discovery”, explained Jayant Murthy, a coauthor of the paper and director of the Indian Institute of Astrophysics.
These results were accepted for publication in the journal Astronomy and Astrophysics on October 3, 2018.
The AstroSat Picture of the Month series, or APOM, is a year-old initiative of the Public Outreach and Education Committee of the Astronomical Society and the AstroSat Training and Outreach Team. The aim of APOM is to share the excitement of AstroSat science as well as the beauty of the universe with everyone. All APOMs are archived here.
This month, APOM brings to you the ultraviolet view of one of the most spectacular objects in the sky, NGC 6302. Located nearly 3,800 light years away in the constellation Scorpius, NGC 6302 is a planetary nebula, whose shape is strikingly similar to the wings of a butterfly, hence aptly named as the Butterfly Nebula. This is the second planetary nebula that we bring forth to you, the first being NGC 40, covered in the APOM issue of December 2017.
Planetary nebulae are beautiful structures formed during the last few stages of the lives of stars like the Sun or a few times heavier. As the stars burn up all the hydrogen or helium fuel, they increase in size and become redder in colour, and are known as giant stars. As the giant star passes through few more stages, it continually sheds its outer layers revealing an inner hot core called the white dwarf. The white dwarf heats up the spewed-out gas which shines in the form of planetary nebula. Many of these planetary nebulae have strikingly symmetric shapes that need not be spherical and it has been suggested that this could be due to the various physical processes occurring in and around the star when it hurls out the gas from the outer layers. These nebulae are named planetary because when astronomers first observed them, they thought that these resembled planets. We now know that this is not the case, although the name has lingered.
Prof Kameshwar Rao, from the Indian Institute of Astrophysics (IIA), and his team have been investigating planetary nebulae in the ultraviolet light. They have imaged the Butterfly Nebula through the far and near-ultraviolet filters of the Ultraviolet Imaging Telescope (UVIT) of AstroSat. Using these images, they have discovered that gas which is bright in the far-ultraviolet extends beyond the known wings of the butterfly out to 5.5 light years from the centre, nearly three times of what is seen in the optical. The reddish coloured figure on the right is the far ultra-violet image of the Butterfly Nebula. The blue image is a cartoon that represents the full extent of the far-ultraviolet emission. These researchers argue that the extended far-ultraviolet light is due to cold hydrogen molecules in the gas present in the outer parts of the nebula which are excited by the central star. They suspect that these far-ultraviolet structures of the planetary nebula point to the possible presence of two central stars in a binary system that are gravitationally bound. The results have been published in the journal Astronomy & Astrophysics and the paper can be read here.