The F-117 is shaped to deflect radar signals and is about the size of an F-15 Eagle. The single-seat Nighthawk is powered by two non-afterburning General Electric F404 turbofan engines, and has quadruple-redundant fly-by-wire flight controls. It is air refuelable. To lower development costs, the avionics, fly-by-wire systems, and other parts are derived from the General Dynamics F-16 Fighting Falcon, McDonnell Douglas F/A-18 Hornet and McDonnell Douglas F-15E Strike Eagle. The parts were originally described as spares on budgets for these aircraft, to keep the F-117 project secret.
The F-117 Nighthawk has a radar signature of about 0.025 m2 (0.269 sq ft).[32] Among the penalties for stealth are lower engine power thrust, due to losses in the inlet and outlet, a very low wing aspect ratio, and a high sweep angle (50°) needed to deflect incoming radar waves to the sides.[33] With these design considerations and no afterburner, the F-117 is limited to subsonic speeds.
The F-117A is equipped with sophisticated navigation and attack systems integrated into a digital avionics suite. It carries no radar, which lowers emissions and cross-section. It navigates primarily by GPS and high-accuracy inertial navigation. Missions are coordinated by an automated planning system that can automatically perform all aspects of an attack mission, including weapons release. Targets are acquired by a thermal imaging infrared system, slaved to a laser that finds the range and designates targets for laser-guided bombs. The F-117A's split internal bay can carry 5,000 lb (2,300 kg) of ordnance. Typical weapons are a pair of GBU-10, GBU-12, or GBU-27 laser-guided bombs, two BLU-109 penetration bombs, or two Joint Direct Attack Munitions (JDAMs), a GPS/INS guided stand-off bomb.
The F-117A's faceted shape (made from 2-dimensional flat surfaces) resulted from the limitations of the 1970s-era computer technology used to calculate its radar cross-section. Later supercomputers made it possible for subsequent planes like the B-2 bomber to use curved surfaces while staying stealthy, through the use of far more computational resources to do the additional calculations needed.