Air to Air missiles-AAM

Joined
Feb 16, 2009
Messages
29,799
Likes
48,280
Country flag
Air-to-air missile Summary


An air-to-air missile (AAM) is a guided missile fired from an aircraft for the purpose of destroying another aircraft. It is typically powered by one or more rocket motors, usually solid fuelled but sometimes liquid fuelled. Ramjet engines, as used on the MBDA Meteor (currently in development), are emerging as propulsion that will enable future medium-range missiles to maintain higher average speed across their engagement envelope. Air-to-air missiles are broadly grouped into short-range missiles (also called "dogfight" or "within visual range" (WVR) and medium- or long-range missiles (beyond visual range (BVR). Short-range missiles tend to use infrared guidance, while medium- and long-range missiles rely upon some type of radar guidance (and sometimes inertial guidance).

Guidance


Guided missiles operate by detecting their target (usually by either radar or infrared methods, although rarely others such as laser guidance or optical tracking), and then "homing" in on the target on a collision course. The target is usually destroyed or damaged by means of an explosive warhead, often throwing out fragments to increase the lethal radius, typically detonated by a proximity fuze (or impact fuze if it scores a direct hit). Note that although the missile may use radar or infra-red guidance to home on the target, this does not necessarily mean that the same means is used by the launching aircraft to detect and track the target before launch. Infra-red guided missiles can be "slaved" to an attack radar in order to find the target and radar-guided missiles can be launched at targets detected visually or via an infra-red search and track (IRST) system, although they may require the attack radar to illuminate the target during part or all of the missile interception itself.

Radar guidance

Radar guidance is normally used for medium or long range missiles, where the infra-red signature of the target would be too faint for an infra-red detector to track. There are two major types of radar-guided missile - active and semi-active. Radar guided missiles can be countered by rapid maneuvering (which may result in them "breaking lock", or may cause them to overshoot), deploying chaff or using electronic counter-measures.

Active radar homing


Active radar (AR)-guided missiles carry their own radar system to detect and track their target. However, the size of the radar antenna is limited by the small diameter of missiles, limiting its range which typically means such missiles have to use another method to get close to the target before turning their radar set on, often relying on inertial guidance systems.

Semi-active radar homing


Semi-active radar (SAR)-guided missiles are simpler and more common. They function by detecting the radar energy reflected from the target, the radar energy is emitted from the launch aircraft's own radar signal. However, this means the launch aircraft has to maintain a "lock" on the target (keep illuminating the target aircraft with its' own radar) until the missile makes the interception, limiting the attacking aircraft's ability to maneuver, which may be necessary should threats to the attacking aircraft appear. It also makes jamming the missile lock easier because the launching aircraft is further from the target than the missile, so the radar signal has to travel further and is greatly attenuated over the distance.

Beam riding


An early form of radar guidance was "beam-riding" (BR). In this method the attacking aircraft directed a narrow beam of radar energy at the target. The air-to-air missile was launched into the beam where sensors on the aft of the missile controlled the missile, keeping it within the beam. So long as the beam was kept on the target aircraft, the missile would ride the beam until making the interception. While simple in concept, the difficulty of simultaneously keeping the beam solidly on the target (which couldn't be relied upon to cooperate by flying straight and level), continuing to fly one's own aircraft, all the while keeping an eye out for enemy countermeasures, can be readily appreciated.

Infrared guidance

Infrared guided (IR) missiles home on the heat produced by an aircraft. Early infra-red detectors had poor sensitivity, so could only track the hot exhaust pipes of an aircraft. This meant an attacking aircraft had to maneuver to a position behind its target before it could fire an infra-red guided missile. This also limited the range of the missile as the infra-red signature soon become too small to detect with increasing distance and after launch the missile was playing "catch-up" with its target. More modern infra-red guided missiles can detect the heat of an aircraft's skin, warmed by the friction of airflow, in addition to the fainter heat signature of the engine when the aircraft is seen from the side or head-on. This, combined with greater maneuverability, gives them an "all-aspect" capability, and an attacking aircraft no longer had to be behind its target to fire. Although launching from behind the target increases the probability of a hit, the launching aircraft usually has to be closer to the target in a tail-chase engagement. An aircraft can defend against infra-red missiles by dropping flares that are hotter than the aircraft, so the missile homes in on the brighter, hotter target. Towed decoys and infra-red jammers can also be used. Some large aircraft and many combat helicopters make use of so called "hot brick" infra-red jammers, typically mounted near the engines. Current research is developing laser devices which can spoof or destroy the guidance systems of infra-redguided missiles. However, the latest missiles such as the ASRAAM use an "imaging" infra-red seeker which "sees" the target (much like a digital video camera), and can distinguish between an aircraft and a point heat source such as a flare. They also feature a very wide detection angle, so the attacking aircraft does not have to be pointing straight at the target for the missile to lock on. The pilot can use a helmet mounted sight (HMS) and target another aircraft by looking at it, and then firing. This is called "off-boresight" launch. For example, the Russian Su-27 is equipped with an infra-red search and track (IRST) system with laser rangefinder for its HMS-aimed missiles. In order to maneuver sufficiently from a poor launch angle at short ranges to hit its target, missiles are now employing gas-dynamic flight control methods such as vectored thrust, which allow the missile to start turning "off the rail", before its motor has accelerated it up to high enough speeds for its small aerodynamic surfaces to be useful.

Electro-optical

A recent advancement in missile guidance is electro-optical imaging. The Israeli Python-5 has an electro-optical seeker that scans designated area for targets via optical imaging. Once a target is acquired, the missile will lock-on to it for the kill. Electro-optical seekers can be programmed to target vital area of an aircraft, such as the cockpit. Since it doesn't depend on the target aircraft's heat signature, it can be used against low-heat targets such as UAV's and cruise missiles

CONTINUED
 
Joined
Feb 16, 2009
Messages
29,799
Likes
48,280
Country flag
Design
Air-to-air missiles are typically long, thin cylinders in order to reduce their cross section and thus minimize drag at the high speeds at which they travel. At the front is the seeker, either a radar system, radar homer, or infra-red detector. Behind that lies the avionics which control the missile. Typically after that, in the centre of the missile, is the warhead, usually several kilogrammes of high explosive surrounded by metal that fragments on detonation (or in some cases, pre-fragmented metal). The rear part of the missile contains the propulsion system, usually a rocket of some type. Dual-thrust solid-fuel rockets are common, but some longer-range missiles use liquid-fuel motors that can "throttle" to extend their range and preserve fuel for energy-intensive final maneuvering. Some solid-fuelled missiles mimic this technique with a second rocket motor which burns during the terminal homing phase. There are missiles in development, such as the MBDA Meteor, that "breathe" air (using a ramjet, similar to a jet engine) in order to extend their range. Modern missiles use "low-smoke" motors - early missiles produced thick smoke trails, which were easily seen by the crew of the target aircraft alerting them to the attack and helping them determine how to evade it.

Missile range[/B]
Missiles are often cited with their maximum engagement range, which is very misleading. A missile's effective range is dependent on factors such as altitude, speed, position, and direction of target aircraft. For example the Vympel R-77 has stated range of 100 km. That's only true for a head-on, non-evading target at high altitude. At low altitude, the effective range is reduced by as much as 75%-80% to 20-25 km. If the target is taking evasive action, or in stern-chase position, the effective range is further reduced. See Air-to-Air missile non-comparison table for more information. The effective range of an air-to-air missile is known as the 'no-escape zone', noting the range at which the target can not evade the missile once launched. Poorly-trained pilots, are known to fire their missiles at maximum-range engagement with poor results. In the 1998-2000 Eritrean-Ethiopian War, fighters from both sides shot over a dozen medium-range R-27 (AA-10 Alamo) missiles at distance with little effect. But when better-trained Ethiopian Su-27 pilots gave chase and attacked with short-range R-73 (AA-11 Archer) missiles, the results were often deadly to the Eritrean aircraft. [1]

Performance

A number of terms frequently crop up in discussions of air to air missile performance.

Launch success zone[/B]
The Launch Success Zone is the range within which there is a high (defined) kill probability against a target that remains unaware of its engagement until the final moment. When alerted visually or by a warning system the target attempts a last ditch manoeuvre sequence.
F-Pole
A closely related term is the F-Pole. This is the slant range between the launch aircraft and target, at the time of interception. The greater the F-Pole, the greater the confidence that the launch aircraft will achieve air superiority with that missile.
No-Escape Zone
The No-Escape Zone is the zone within which there is a high (defined) kill probability against a target even if it has been alerted. This zone is defined as a conical shape with the tip at the missile launch. The cone's length and width are determined by the missile and seeker performance. A missile's speed, range and seeker sensitivity will mostly determine the length of this imaginary cone, while its agility (turn rate) and seeker complexity (speed of detection and ability to detect off axis targets) will determine the width of the cone.
Dogfight
Short-range air-to-air missiles used in "dogfighting" are usually classified into five "generations" according to the historical technological advances. Most of these advances were in infrared seeker technology (later combined with digital signal processing).

First generation

Early short-range missiles such as the early Sidewinders and Vympel K-13 (AA-2 Atol) had infrared seekers with a narrow (30 degree) field of views and required the attacker to position them self behind the target (rear aspect engagement). This meant the target aircraft only had to perform a slight turn to move outside the missile seeker field of view and cause the missile to lose track of the target ("break lock").[1]

Second generation


Second generation missiles utilized better seekers that improved the field of view to 45 degrees.

Third generation


This generation introduced "all aspect" missiles, because more sensitive seekers allowed the attacker to fire at a target which was side-on to itself, i.e. from all aspects not just the rear. This meant that while the field-of-view was still restricted to a fairly narrow cone, the attack at least did not have to be behind the target.[1]

Fourth generation


The Vympel R-73 (AA-11 Archer) entered service in 1985 and marked a new generation of dogfight missile. These missiles employed more advanced seeker technologies such focal plane arrays that improved resistance to infrared countermeasures (IRCM) such as flares and increased off-bore sight capability to in excess of 60 degrees, i.e. a 120 degree field of view. To take advantage of the increased field-of-view that now exceeded the capabilities of most aircraft radars also meant that helmet mounted sights gained popularity.[2] Many newer missiles include what is known as "look-down-shoot-down" capability, as they could be fired onto low flying planes that would formerly be lost in ground clutter. These missiles are also much more agile, some by employing thrust vectoring (typically gimballed thrust).

Fifth generation


The latest generation of short-range missiles again defined by advances in seeker technologies, this time electro-optical imaging infrared (IIR) seekers that allow the missiles to "see" images rather than single "points" of infrared radiation (heat). The sensors combined with more powerful digital signal processing provide the following benefits:[2]

greater infrared counter countermeasures (IRCCM) ability, by being able to distinguish aircraft from infrared countermeasures (IRCM) such as flares.
greater sensitivity means greater range and ability to identify smaller low flying targets such as UAVs.
more detailed target image allows targeting of more vulnerable parts of instead of just homing in on the brightest infrared source (aircraft exhaust).
Examples of fifth generation missiles include:

AIM-132 ASRAAM – Britain (1998–)
AIM-9X Sidewinder – USA (2003–)
IRIS-T – German lead consortium (2005–)
Python 5 – Israeli
A-Darter (under development) – South Africa
Vympel R-74 – Russia (1994-)
 
Joined
Feb 16, 2009
Messages
29,799
Likes
48,280
Country flag
List of missiles by country


Brazil
Mectron MAA-1 Piranha - short range IR

France
Matra R550 Magic - short-range, IR guided
Matra Magic II - IR guided missile.
Magic Super 530F/Super 530D - medium-range, radar-guided
MBDA MICA - medium-range, IR or radar guided

Germany
R4M rocket - first practical anti-aircraft rocket, used at the end of WW2
Ruhrstahl X-4 - World War II design, first practical anti-aircraft missile, MCLOS, never saw service
Henschel Hs 298 - World War II design, MCLOS, never saw service
MBDA Meteor
IRIS-T

European
MBDA Meteor - medium range, active radar homing; design to replace AMRAAM
IRIS-T - short range infrared homing; replacement for AIM-9 Sidewinder

India
Astra missile (Undergoing developmental trials) - long range

Iraq
Al Humurrabi- Long range, semi active radar

Israel
Rafael Shafrir - first Israeli domestic AAM
Rafael Shafrir 2 - improved Shafrir missile
Rafael Python 3 - medium range IR-homing missile with all aspect capability [3]
Rafael Python 4 - medium range IR-homing missile with HMS-guidance capability [4]
Rafael Python 5 - improved Python 4 with electro-optical imaging seeker [5]
Rafael Derby - Also known as the Alto, this is a medium-range, BVR active radar-homing missile [6]

Italy
Alenia Aspide - Italian manufactured version of the AIM-7 Sparrow, based on the AIM-7E.

Japan
AAM-3 - short-range Type 90 air-to-air missile
AAM-4 - middle-range Type 99 air-to-air missile
AAM-5 - short-range Type 04 air-to-air missile

Pakistan
Sarab 1 - Pakistani version of Matra Magic Missile, Short Range Missile Project Cancelled due to unsatisfactory results.
SD-10 - Jointly Developed by China and Pakistan
PL-9 - Jointly Developed by Pakistan and China.

People's Republic of China
PL-1 - PRC version of the Soviet Kaliningrad K-5 (AA-1 Alkali), retired.
PL-2 - PRC version of the Soviet Vympel K-13 (AA-2 Atoll), which was based on AIM-9B Sidewinder. [7] Retired & replaced by PL-5 in PLAAF service.
PL-3 - updated version of the PL-2, did not enter service.
PL-5 - updated version of the PL-2, known versions include: [8]
PL-5A - semi-active radar-homing AAM intended to replace the PL-2, did not enter service. Resembles AIM-9G in appearance.
PL-5B - IR version, entered service in 1990s to replace the PL-2 SRAAM. Limited off-boresight
PL-5C - Improved version comparable to AIM-9H or AIM-9L in performance
PL-5E - All-aspect attack version, resembles AIM-9P in appearance.
PL-7 - PRC version of the IR-homing French R550 Magic AAM, did not enter service. [9]
PL-8 - PRC version of the Israeli Rafael Python 3 [10]
PL-9 - short range IR guided missile, marketed for export. One known improved version (PL-9C). [11]
PL-10 - semi-active radar-homing medium-range missile based on the HQ-61 SAM, [12] often confused with PL-11. Did not enter service.
PL-11 - medium-range air-to-air missile (MRAAM), based on the HQ-61C & Italian Aspide (AIM-7) technology. Limited service with J-8-B/D/H fighters. Known versions include: [13]
PL-11 - MRAAM with semi-active radar homing, based on the HQ-61C SAM and Aspide seeker technology, exported as FD-60 [14]
PL-11A - Improved PL-11 with better range, warhead, and seeker. The new seeker only requires fire-control radar guidance during the terminal stage, providing a basic LOAL (lock-on after launch) capability.
PL-11B - Also known as PL-11 AMR, improved PL-11 with AMR-1 active radar-homing seeker.
LY-60 - PL-11 adopted for navy ships for air-defense, sold to Pakistan but does not appear to be in service with the Chinese Navy. [15]
PL-12 (SD-10) - medium-range active radar missile [16]
TY-90 - light IR-homing air-to-air missile designed for helicopters [17]

Russia/Soviet
Kaliningrad K-5 (NATO reporting name AA-1 'Alkali') - beam-riding
Vympel K-13 (NATO reporting name AA-2 'Atoll') - short-range IR or SARH
Kaliningrad K-8 (NATO reporting name AA-3 'Anab') - IR or SARH
Raduga K-9 (NATO reporting name AA-4 'Awl') - IR or SARH
Bisnovat R-4 (NATO reporting name AA-5 'Ash') - IR or SARH
Bisnovat R-40 (NATO reporting name AA-6 'Acrid') - long-range IR or SARH
Vympel R-23 (NATO reporting name AA-7 'Apex') - medium-range SARAH or IR
Molniya R-60 (NATO reporting name AA-8 'Aphid') - short-range IR
Vympel R-33 (NATO reporting name AA-9 'Amos') - long range active radar
Vympel R-27 (NATO reporting name AA-10 'Alamo') - medium-range SARH or IR
Vympel R-73 (NATO reporting name AA-11 'Archer') - short-range IR
Vympel R-77 (NATO reporting name AA-12 'Adder') - medium-range active radar
Vympel R-37 (NATO reporting name AA-X-13 'Arrow') - long-range SARH or active radar
Novator KS-172 AAM-L - extreme long range, inertial navigation with active radar for terminal homing

South Africa
A-Darter - short range IR
R-Darter - beyond visual range (BVR) radar-guided missile
United Kingdom
Fireflash - short range beam-riding
Firestreak - short range IR
Red Top - short range IR
Skyflash - medium-range radar-guided missile based on the AIM-7E2, said to have quick warm-up times of 1 to 2 seconds.
AIM-132 ASRAAM - short range IR

United States
AIM-4 Falcon - radar (later IR) guided
AIM-7 Sparrow - medium range semi-active radar
AIM-9 Sidewinder - short range IR
AIM-54 Phoenix - long range, semi-active and active radar
AIM-120 AMRAAM - medium range, active radar; replaces AIM-7 Sparrow
 
Joined
Feb 16, 2009
Messages
29,799
Likes
48,280
Country flag
Defunct Humanity: Russian AAMs. Part 1

Russian AAMs

In general, the serial Russian air-to-air missiles are divided into 4 families: short-range R-73 (AA-11 'Archer'), median range R-77 (RVV-AE) and R-27 (AA-10 'Alamo') and long range R-33 modifications. All these weapons were developed by the missile design house 'Vympel' and now are manufactured by relative new corporation 'Tactical Missiles Weapon', where 'Vympel' was merged. The upgraded variant of R-33 missile is the 300 km range AA-13 'Arrow' (R-37, K-37, Izdeliye 610 or R-VD), but the fighters with needed radar capability (Su-35) is only entering a serial production. The same is about 'Novator's KS-172 (RVV-L) missile wich extramally long range (400 km) demand according radar capability. The anti-radiation Kh-31 missile previously has only a limited AWACS-kill capability due to the lack of an active radar. The other kinds of new generation missiles are in active development process in Russia and used to be installed on 5th gen PAK-FA/FGFA fighter. They are yet to be de-classified.


The long range R-33E missile is an export variant of the main MiG-31 interceptor weapon (R-33, K-33, 'izdelie 410, AA-9 'Amos'), which is the backbone of the Russian anti-aircraft\anti-cruise missiles system. Having high velocity, 'Agat' 9B-1388 active seeker combined with the semiactive radar midcourse guidance and inertial support, this missile can effectively destroy the incoming 'Tomahawks'. Other fair targets for this class of missiles are enemy bombers. According to the developer information its range is 120 km, target's altitude 0.05 – 25 km, warhead mass 47 kg, launch weight 490 kg, overall dimension 4.15 x 0.9 x 1.1 m.

Russian tactical air-to-ground weapons

Defunct Humanity: Russian tactical air-to-ground weapons. Part 2
The 'Tactical Missiles Corporation' is a manufacturer of the 'big bad boys' like Kh-59 long range air-to-ground missile and KAB-1500 guided bomb. During last couple of years a number of new lethal modifications of these weapons were offered for Russian allies. The new weapons have modular structure with changeable warheads, longer range and better defense against jamming. One example: the range of Kh-38 family is rised from 10 to 40 km against its Kh-25M\Kh-29 predecessors. It's known from other sources Kh-59MK2 can have penetrating or cassette warhead (320 and 283 kg). Kh-58UShKE has shorter folded wing for use from internal bays. It hits radars working in 1.2 - 11 GHz A, A', B, B', C diapasons, with preprogramming option for guiding. The range of Kh-58UShKE is rised from 200 to 245 km. Speed - 1200 m/s. The broad using of satellite navigation in both GPS abd GLONASS standards are implemented. This is an interview with the Director General of the Tactic Missiles Corporation Boris Obnossov in Russian English language 'National Defense' issue 1, 2009.



In addition to what mr. Obnossov said, the Tactical Missile Corporation now offers the new variant of Kh-31 family with 2 – 2.5 times longer range: Kh-31PD antiradiation missile. It's compatible with any 4th gen. Russian designed fighters, including Su-30MKI, MiG-29 and MiG-35.
 

SajeevJino

Long walk
Senior Member
Joined
Feb 21, 2012
Messages
6,017
Likes
3,364
Country flag
I have a doubt


Is our Russian made Fighters migrate with Air to Air Missiles Apart From Russia and Our French made fighters accompany the Russian Missiles

Please Clarify
 

Payeng

Daku Mongol Singh
Senior Member
Joined
Mar 7, 2009
Messages
2,522
Likes
777
This should be the 1:1 scale model of Astra missile.


and this is a model of Barak-8 SAM


I wonder if Barak-8 can be air-lunched :hmm:

or an extended range Astra-II ? :shocked:
 
Last edited:

Kunal Biswas

Member of the Year 2011
Ambassador
Joined
May 26, 2010
Messages
31,122
Likes
41,042
The first one is 100kms range Astra ..

The second one is 50kms range Astra ..

-----------------

Astra comes in both long and medium range..

This should be the 1:1 scale model of Astra missile.


or an extended range Astra-II ? :shocked:
 

Payeng

Daku Mongol Singh
Senior Member
Joined
Mar 7, 2009
Messages
2,522
Likes
777
The first one is 100kms range Astra ..

The second one is 50kms range Astra ..

-----------------

Astra comes in both long and medium range..
Point is can Barak-8 be used in A-to-A role...
 

Payeng

Daku Mongol Singh
Senior Member
Joined
Mar 7, 2009
Messages
2,522
Likes
777
Nope, Not in current form, it need to be modified ..

Like Iranians did with hawk SAM ..
What those can be ? a rail launcher, some thing like the air launched BrahMos....
 

Payeng

Daku Mongol Singh
Senior Member
Joined
Mar 7, 2009
Messages
2,522
Likes
777
more over this version of Astra seems to have familiar aerodynamics :truestory:
 

Kunal Biswas

Member of the Year 2011
Ambassador
Joined
May 26, 2010
Messages
31,122
Likes
41,042
This is MIM-23 Hawk sam >>



Operational range >>45-50km

IRAN >>

The Islamic Republic of Iran Air Force is reported to have experimented with a number of MIM-23 Hawk missiles for carriage on F-14 Tomcat fighters in the air-to-air role under a program known as SKY Hawk.

The Islamic Republic of Iran Air Force had recently revealed its own version of the MIM-23 Hawk the Shahin which it claims to be under production.

===============







What those can be ? a rail launcher, some thing like the air launched BrahMos....
 

sasi

Senior Member
Joined
Nov 18, 2012
Messages
3,401
Likes
1,690
What those can be ? a rail launcher, some thing like the air launched BrahMos....
Barak can be modified to launch in air-air role.
Major Changes are needed to control rolling-
1.)barak internal alignments should be slightly adjusted in such a way its weight is one-sided. (so that gravity will kick in to control rolling).
2.)rudders and wings should be slightly lengthened to better control in altitude. (to control rolling in low pressure).
3.)should be ruggdised to handle the supersonic waves of ac's. (vibration).
 

SajeevJino

Long walk
Senior Member
Joined
Feb 21, 2012
Messages
6,017
Likes
3,364
Country flag
I have a doubt


Is our Russian made Fighters migrate with Air to Air Missiles Apart From Russia and Our French made fighters accompany the Russian Missiles

Please Clarify
@p2prada

Please Sir ..!!!
 
Last edited by a moderator:

Twinblade

Senior Member
Joined
Dec 19, 2011
Messages
1,578
Likes
3,231
Country flag
This should be the 1:1 scale model of Astra missile.


and this is a model of Barak-8 SAM


I wonder if Barak-8 can be air-lunched :hmm:

or an extended range Astra-II ? :shocked:
It was my first thought as well, that the Astra-LR would be based off Barak-8 missile considering that both are dual pulse. That model of Astra which is neither the old model nor the current model was primarily responsible for it. That does not seem to be the case. This is real Barak-8 missile under construction.


It is significantly wider, longer and heavier than the dual pulse Astra (~176mm wide)


Sure, you can launch Barak-8 from an aircraft at 50,000 ft. But you would have to use different grade of propellants that can fire up at those altitudes, build an airframe that sustain that continuous loading, essentially building a missile from scratch.
 

Global Defence

New threads

Articles

Top