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ABSTRACT In this paper, a consistent DC to RF modeling solution for Al gallium nitride (GaN)/GaN
high electron mobility transistors is demonstrated that is constructed around a surface-potential-based core.
Expressions for drain current and intrinsic terminal charges in the form of surface-potential are used to
simultaneously model the DC characteristics and the intrinsic capacitances of a commercial GaN device.
Self-heating and trapping effects are incorporated to account for the non-linear nature of the device. We
discuss the parameter extraction flow for some of the key model parameters that are instrumental in
fitting the DC characteristics, which simultaneously determines the bias-dependent intrinsic capacitances
and conductances that significantly eases the RF parameter extraction. Parasitic capacitances, gate finger
resistance, and extrinsic bus-inductances are extracted, from a single set of measured non-cold-FET
S-parameters, using the model process design kit. The extraction procedure is validated through overlays
of broadband (0.5-50 GHz) S-parameters, load-pull and harmonic-balance (10 GHz) simulations against
measured data, under multiple bias conditions to successfully demonstrate the model performance at

large-signal RF excitations.

INDEX TERMS GaN HEMT, parameter extraction, physics-based RF compact model, load-pull.

I. INTRODUCTION

Gallium Nitride (GaN) HEMTs and their associated RF cir-
cuit applications have been a topic of aggressive academic
and industrial research over the past couple of decades, due
to the commendable level of performance promised by the
GaN material system and the heterojunction that it forms
with AlGaN, leading to features such as high mobility, high
saturation velocity, high sheet carrier density, high break-
down voltage etc [1], [2]. In order to take full advantage of
these properties and to translate them into viable microwave
and RF circuit applications, a fully robust and accurate RF
GaN HEMT model is of prime importance.

The existing literature encompasses a huge variety of mod-
els that are primarily empirical, table-based, artificial neural-
network based or X-parameter based models [3]-[14]. High
fidelity physics-based compact models for GaN HEMTs,
particularly surface-potential-based, are desirable and the
industry is looking for them for multiple reasons [15], [16].
First, GaN technology is still not fully matured and a

physics-based model would help a great deal in the device
design and therefore in the evolution of the GaN technol-
ogy itself. Second, a physics-based model offers a relatively
smaller set of parameters whose flow of extraction is sim-
ple and can be related to the intrinsic device physics,
leading to a more meaningful model card. Finally, physics-
based models are inherently scalable with regard to bias,
temperature or geometry, which can be of significance to
circuit designers so that they can explore a wider design
space.

In our previous publications, we demonstrated an analyt-
ical calculation of surface potential (SP) in GaN HEMTs
used to self-consistently evaluate the drain current and
intrinsic charges, from which we obtain the capaci-
tances [17]-[21]. It is named the Advanced SPICE Model
for GaN HEMTs (ASM-GaN-HEMT) and is currently under
consideration for industry standardization at the Compact
Model Coalition (CMC) [22]. In this paper, we aim to present
the RF performance of the model under small-signal and
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large-signal considerations. Moreover, we present a simple
RF model parameter extraction procedure wherein only the
parasitic components of the intrinsic capacitances are to be
extracted using RF measured data whereas the complex bias
dependent model is naturally taken care of by fitting the
DC-characteristics which is due to the dependence of the
intrinsic charges and current on a single quantity, i.e., the
surface-potential. As a result, the extraction procedure does
not require any complex optimization programs [8], [12]
as opposed to various empirical or artificial neural network
based models in which the current source and intrinsic capac-
itances are essentially disconnected and bias-independent.
This serves as our primary motivation for a physics-based
RF compact model for GaN HEMTs that could be readily
used as an industry standard for design of state-of-the-art
RF circuits.

The paper is organized as follows: We briefly revisit the
model description in Section II and its DC parameter extrac-
tion flow is presented in Section III. Trapping effects and
their modeling are discussed in Section IV. In Section V, we
carry out the extraction of the multi-bias RF small-signal
model valid for a broadband frequency range whereas large-
signal performance of the model is studied in Section VI.
Finally, conclusions are drawn in Section VII.

Il. MODEL DESCRIPTION

The heart of the model is the analytical modeling of surface-
potential (y) and its variation with applied gate (V) and
drain (V4) biases. More details about i calculation can be
found in [17]. The expressions for intrinsic gate (Qg;) and
drain (Qg;) charges [19], [20] and drain current (Iy) [23] after
incorporating real device effects (see Fig. 1) such as veloc-
ity saturation, DIBL, mobility degradation, channel length
modulation (CLM) are reproduced in (1)—(3), as shown at
the bottom of this page, for the sake of completeness.

The source charge (Qs) is derived from charge conser-
vation among Qgi, Qgi and Qs, which offers the benefit
of obtaining good convergence during simulation, and these
quantities are used to compute the intrinsic capacitances.
It is worth mentioning that the feature of having a simul-
taneous solution for the drain current as well as the
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FIGURE 1. Various non-idealities in device behaviour added to the core
surface-potential-based drain current model to realize a more realistic
device.

capacitances offers a significant advantage in terms of param-
eter extraction at RF as well as accuracy of the S-Parameter
simulations. Empirical models lack such an advantage, since
the modeling approach followed in such cases involves iso-
lated expressions for capacitances, transconductance, output
conductance etc.

The access region (AR) resistance model [24] is appended
to the core model in order to capture the significant mod-
ulation of the ON-resistance in GaN devices due to large
ARs particularly at drain so as to support a high breakdown
voltage. The current in the AR is represented as in (4), as
shown at the bottom of this page, [24], where L, is the
AR length, Nspaccs, Vsataccs and Upaccs represent the
AR 2DEG sheet carrier density, carrier saturation velocity
and mobility respectively.

Iil. DC PARAMETER EXTRACTION

It is well known that various physical effects within the
device are intertwined and, therefore, collectively influence
the values of parameters. It makes the direct extraction
of parameters complicated for the users, and may demand
significant number of device measurements for the param-
eter extraction process. For instance, in order to extract
parameters that govern the AR resistances, a set of TLM
measurements might come very handy, however, absence of
such data might make it tedious to directly extract not only
AR resistance model parameters but also other parameters
as well.
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FIGURE 2. Step by step DC Parameter Extraction Flow using multiple bias Iy — Vg and Iy — V4 plots. (a) Vo identification from I; — Vg linear data.
Optimization of Ngacror: 70 and Cpgcp from logarithmic scale 15 — Vg plot after Vog is extracted. (b) Ug is optimized to fit the low Vg conditions. (c) The
ON-resistance in the linear region of the 14 — V4 plot is fitted by adjusting Ngoaccs- (d) Vsataccs is extracted by fitting the saturation current in 14 — V4.
(e) Rryo is adjusted to fit self-heating. The model results before and after the extraction of parameters are shown in red and black respectively.

TABLE 1. Key DC model parameters [23].

Parameter Description Extracted
Value
Vorr Cutoff Voltage —2.86 V
NrAcTOR Subthreshold Slope Factor 0.202
Cpscp SS Degradation Factor 0.325 V!
No DIBL Parameter 0.117
VDSCALE DIBL Parameter 2.981
Uo Low Field Mobility 33.29
mm?/V —s
Nsoaccs AR 2DEG density 1.9¢ + 17 /m?
VsaTaccs AR saturation velocity 157.6k cm/s
Rrmro Thermal Resistance 22 Q

In this work, we turn our focus on certain key model
parameters, listed in Table 1, and extract their values using
fitting or data identification under different bias regions so
that the different physical effects can be decoupled. The
device under test (DUT) is a 125 nm GaN device with a
gate periphery of 10 x 90 yum, and AR lengths of 200 nm
and 1.7 um between the gate-to-source and gate-to-drain
nodes respectively. Fig. 2 has the intermediate plots where
in parameters are extracted by identification from data or
tuning within certain bias ranges.

To start with, Fig. 2(a) has the I — V, plot in linear and
log scale for multiple V4 conditions. Vopr can be identified
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from the data as the Vg value at which Iy begins to rise,
marking the end of the subthreshold region. It can also be
quantified using the well-known g,,-derivative or constant
current method. The extracted value of Vogg should corre-
spond well with the Iqs — Vg log plot. This gives a good
starting value of Vopr and can be fine-tuned for better
fitting. In the same plot, parameters Nractor, Cbscp, 70
and VpscaLg can be extracted from the log scale curves
under subthreshold region. NracToRr is the subthreshold slope
parameter and can be optimized to fit the subthreshold slope
for low Vg values. Once Npactor has been set, the parame-
ter 1o can be optimized to adjust DIBL or Vopp-degradation
with increasing V4. Alternately, o can be extracted from
inspecting the data. The shift in subthreshold curves between
linear and saturation V4 values for same current should give a
rough estimate of ny whereas VpscaLg determines the rate at
which Vopr changes with increasing V4. The degradation in
subthreshold slope with increasing Vg is decided by Cpscp.

The low field mobility parameter Ug is adjusted by fit-
ting the low Vg4 and low V, data conditions in the Iq — V,
linear plot so that mobility as a result of degradation from
the vertical field as well as field along the channel can be
safely assumed to be Up. The Fig. 2(b) and its zoomed inset
highlight the fitting results after optimizing Uyp.

The AR parameters Ngpoaccs and Vsataccs are extracted
from Ig — Vg4 linear and saturation regions respectively as
shown in Fig. 2(c) and 2(d). Nsogaccs is instrumental in
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FIGURE 3. DC Parameter extraction flow as described in Section Il to fit
not only the drain current but also to obtain intrinsic capacitances. The AR
model is incorporated into the intrinsic model as shown in Fig. 2.
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FIGURE 4. (I) Two R — C sub-circuits used for modeling trapping effects,
one each for gate-lag and drain-lag. The voltages Vap; , are fed back into
the compact model to update its key parameters as sﬁown in (5). (11) The
dual-pulsed scheme to do the pulsed-1V simulation.

deciding the ON-resistance whereas Vsaraccs settles the sat-
uration current level. Self-heating effect (SHE) is modeled
using the standard R — C network approach, which consists
of a thermal resistance (Rtyo) and a thermal capacitance
(Ctno). The change in voltage at the thermal node gives
the rise in temperature (AT), which is added to the nom-
inal temperature (Tnom) at which the device is operating.
The negative slope for high current Iy — Vg4 regions in the
DC — 1V plots, shown in Fig. 2(e), illustrates the SHE as
predicted by the model and allows extraction of parameter
Rtho. The flow described above is summarized in Fig. 3.

IV. MODELING OF TRAPPING EFFECTS
An accurate trap model is crucial in order to estimate the
large-signal RF behaviour of GaN HEMTs. A reduction in
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FIGURE 5. Correlation between measured and modeled (a) Pulsed 14 — Vg
and (b) Pulsed 14 — V4 characteristics using the trap model. Accurate fits
are seen for multiple quiescent bias conditions (V4, = 5,20 V and

’dq = 10, 100 mA/mm), which is essential for the non-linear RF behavior of
the model.
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FIGURE 6. Small Signal Equivalent Circuit Model of the overall device
including the intrinsic device as described by the ASM — HEMT model PDK.
Access resistances Rg, Ry and Rs are included in the intrinsic core model
whereas only the bus-inductances form the extrinsic level parasitics.
Standard transmission line models are used for manifolds.

output power of RF power amplifiers as compared to the
expected theoretical output power (Vpplpp/8) is ascribed to
the various manifestations of trapping such as current col-
lapse, knee walkout, drain-lag, gate-lag etc [25]—[28]. Pulsed
IV characterization in dual-pulse mode at a pulse frequency
of 1000 Hz with a duty-cycle of 0.02 %, as indicated in
Fig. 4, is performed under multiple quiescent drain and gate
bias conditions such that both the gate and the drain voltages
are pulsed simultaneously from the quiescent bias point. The
pulse width of 200 ns and the measurement window of 40 ns
within these 200 ns is short enough to ensure iso-thermal and
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iso-dynamic measurement of the pulsed-IV characteristics.
From Fig. 5 we observe that the four most important parame-
ters, in which dispersion due to trapping should be modeled,
are Vorr, 10, Cpscp and the drain/source AR resistances
(Rgs). We model this with 2 R — C sub-circuits shown in
Fig. 4. The node voltages Viyap1 and Viap, which represent
effects due to gate and drain lag respectively, are fed back
into the model to update Vorr, 19, Cpscp and Rgs, given as

Vorr(Trap) = Vorr + (VOFFTR * Virap2)
no(Trap) = no + (noTR * Virap2)
Cpscp(Trap) = Cpscp + (Cpscptr - Virap2)

Rys(Trap) = Ras — (RTRl'Vtrapl) + (RTRZ : VtrapZ) (5)

where VorrTr, 70TR, CpscpTr, RTr1 and Rrrz are used
as parameters. Shown in Fig. 5 are accurate model fits
for pulsed Iqg — Vg and Ig — Vg4 for multiple quiescent bias
conditions, validating the proposed trap model.

V. RF PARAMETER EXTRACTION

RF small-signal equivalent circuit (SS — EC) is shown in
Fig. 6. The overall SS — EC has gate (GMF) and drain
(DMF) manifolds or pads, feeding the signals to gate and
drain ports respectively. It also has the source manifold
(SMF) or via-holes, through which the source-pad is con-
nected to the back-plane metallization. Beyond the manifolds
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dent behavior of SS — EC elements is seen after which inductive effects dominate.

are bus-inductances Lyg, Lxq and Ly that represent the con-
nection between the pads and the actual DUT, which itself
is governed by the process design kit (PDK). The zoomed
inset shows the equivalent circuit representation of the intrin-
sic DUT featuring parasitic capacitances Cgs p, Cgp,p and
Cps,p and access resistances Ry, Rg and Rg.

With the bulk of the parameter extraction exercise done
for DC — IV in Section III, the transconductance (gp,), out-
put conductance (gqs), intrinsic capacitances (Cgsi, Cgd,i
and Cgys;) and intrinsic gate resistance (Rg;) are simulta-
neously determined since they depend on a single quantity,
i.e., ¥. Additionally, AR resistances, Ry and R, are also
fitted while extracting values for Nsoaccs and Vspaccs dur-
ing DC parameter extraction. So, we now are only left with
the task of extracting the parasitic capacitances and the gate
finger resistance (Rg f) in addition to the inductances.

Keysight’s ADS simulator is used to perform all the
model simulations. Broadband S-parameters (0.5 — 50 GHz)
measured under multiple bias conditions are used for RF
parameter extraction. The manifolds are deembedded and S-
parameters for each of the manifolds in the form of 2-port
S-parameter files are obtained using on-wafer Thru Reflect
Load (TRL) deembedding [29], [30]. The extrinsic-level
measurements, obtained after deembedding the manifolds,
are henceforth employed for parameter extraction. We start
with the intrinsic element extraction following the standard
low-frequency Y-parameter based approach [31]. It must be
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FIGURE 8. Large resistors Rgs and Rgd are included in the intrinsic SS — EC
to capture the differential gate resistance accounting for current flowing
through the gate-source and gate-drain Schottky diodes respectively. Their
inclusion significantly impacts the overall gate resistance (Rg) at low
frequencies as shown in Fig. 8(a). Ry, and C,,p, are included to capture
the substrate loss at the output port. It must be noted that AR resistances
Rs and Ry have been omitted since their impact is already embedded in
gm and gyq as described in Section lll.

FIGURE 10. Comparison between modeled and experimentally measured
data of broadband extrinsic-level S-Parameters for frequency 0.5 — 50 GHz.
Smith plots for S1; and Sy; (a—b), Sy, and S,y (c—d) are shown for 2
different drain-bias conditions, with 10 different gate biases (I = 10 — 100
mA/mm) for each drain condition. The model is accurate in capturing the
bias dependence of S-parameters which validates the accuracy of the core
intrinsic model as well as the RF parameter extraction procedure. The
kink-effect in S,; is very well reproduced by the model, which highlights
the excellent modeling of the intrinsic characteristics of the device [33].
The arrows indicate the direction of increasing I4.
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FIGURE 9. Comparison between modeled and measured broadband
extrinsic-level Y-parameters. Y;; are shown here for illustration. The
model accurately captures the peaks and dips and their bias dependence
which is a manifestation of the interaction between the intrinsic
capacitances and the extrinsic inductances. The values of bus-inductances
can be fine-tuned to fit the peaks/dips in measured and modeled
extrinsic-level Y-parameters.

noted that due to the inclusion of the AR model in the
core model, as explained in Section III, we can use it to our
advantage by omitting Ry and Ry from the intrinsic SS — EC
since their effect on g, and gqs is already captured. This
significantly simplifies our hand-analysis for RF parame-
ter extraction without compromising on the accuracy due to
omission of AR resistances as reported in [31].

The overlays of measured and modeled plots for intrinsic
SS — EC elements plotted against frequency are shown in
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FIGURE 11. RF Parameter extraction flow as described in Section V to
extract the RF small signal model for the GaN device. The flow is
straightforward and does not require any optimization and is validated by
accurate correlation between measured and modeled broadband
S-parameters as shown in Fig. 10.

Fig. 7. The values of the parasitic capacitances are adjusted
to settle the levels of the capacitance plots, whereas the trap-
model takes care of the ggs dispersion. The only dispersion
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FIGURE 12. (a) ADS schematic for simulating load-pull contours using the embedded model. Pad level parasitics in the form of 2-port S-parameter
components are added. Right in the centre is the DUT which is governed by the ASM-GaN-HEMT PDK. (b-i) Discrete load-sweeps for Poyy and PAE
against real and imaginary loads for multiple bias conditions, at 10 GHz signal frequency. The model accurately predicts the Poyr and PAE maxima as

well as their mutual tradeoffs upon varying the load resistance/reactance.

in g, at low frequencies in our model is due to self-heating,
and decided by the values of self-heating parameters Rrpo
and Crtyo. However, their bias dependence is already taken
care of by the core surface-potential-based model. The quasi-
independence of these elements against frequency, which is a
standard benchmark to verify the validity of the proposed RF
model, is observed for nearly 10 GHz giving us a significant
extraction range before which inductive effects come into the
picture.

It must be noted that Ry increases abruptly as we move to
lower frequencies (see Fig. 8(a)), which can be ascribed to
the differential gate-channel resistances seen in GaN devices
due to current flowing through gate-source and gate-drain
diodes [32]. We model it by including large resistors Rys and
Rgq across gate-source and gate-drain terminals as shown in
Fig. 8(b). Nonetheless, we still find a substantial frequency
range for extraction of gate finger resistance Ry f = Rg — Ry
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as illustrated in Fig. 8(a). The extracted values of parasitic
capacitances and resistances are shown in Table 2.

Substrate loss is captured using the standard RC series
network across the drain and source nodes as shown in
Fig. 8(b). The substrate network affects the ggs-dispersion
observed at low frequencies which in turn affects Sy of the
device. Ideally, the time constant corresponding to the RC
substrate network should be determined by low frequency
Y-parameters. Since the broadband S-parameter measured
data for the device at our disposal starts from 500 MHz,
we therefore cannot extract the exact values of Ry, and
Csup. SO, a convenient time constant is chosen such that
it accounts for gds-dispersion well below 500 MHz while
giving the best fits at the same time. In our case, its value
was set to 50 us or 20 kHz.

It is interesting to note that the extrinsic inductances and
the bias-dependent intrinsic capacitances resonate at higher
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TABLE 2. Extracted capacitances and resistances.

Cas,p Ccp,p Cps,p

510 fF 165 {F 182 {F

Rg ¢ Rgs Rga

0.582 19k2 19k2
TABLE 3. Bus-inductances (pH).

Lxg Lxs Lxd

10.1 —6.08 8.25

frequencies, a manifestation of which is the occurrence of
dips and peaks in extrinsic-level Y-parameters, as shown in
Fig. 9 as an illustrative example. These features can be used
to extract the bus-inductances, tabulated in Table 3, in order
to match the peaks corresponding to measured and modeled
Y-parameters. As can be seen, the model is highly accurate in
capturing the resonating behavior for multiple bias conditions
due to varying capacitances with bias, thereby acting as an
alternate way of validating the model extraction procedure.
The negative value of Ly; can be ascribed to an improper
calibration or de-embedding of the pad parasitics.

To conclude the RF parameter extraction process, over-
lays of the broadband S-Parameters for a frequency range of
0.5 — 50 GHz are shown in Fig. 10. The results shown are for
20 different bias conditions: 5 V and 20 V at drain with 10
different voltage values at gate, that give a quiescent current
spanning over an order of magnitude (10 — 100 mA/mm).
A high level of correlation between the measured data and
the model for a wide variety of bias conditions is observed,
which is an important model capability as far as design
of various PA classes under varying drain supply voltages
is concerned. Also, the model is accurate in predicting the
bias-dependence of the kink-effect in S, which can be of
significance in design of the output matching network for
PAs [34]. The entire parameter extraction flow is straight-
forward and does not require any optimization algorithms as
is summarized in Fig. 11.

VI. LARGE-SIGNAL MODEL BEHAVIOR

To examine the large-signal performance of the proposed
model, correlations between measured and model generated
Output-Power (PoyTt) and Power-Added-Efficiency (PAE)
load-pull plots are made. Shown in Fig. 12(a) is the ADS
load-pull schematic using the model PDK and device extrin-
sic components. The measured load-pull data is obtained
using load tuners from Focus Microwaves with an input-
power (Pin) level of 22 dBm at 10 GHz fundamental
frequency. To get a deeper clarity on the impact of load
impedances on Poyr and PAE, the load-pull data rein-
terpreted into discrete load sweeps is compared for both
measured data and model estimations in Fig. 12(b)-12(i).
The variation of Poyr and PAE and their mutual trade-offs
as real and imaginary parts of the load are swept is captured
accurately by the model.
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FIGURE 13. Comparison of measured and modeled Pgyy (a, c) and PAE
(b, d) load-pull contours for V4 = 20 V at two current densities 15 = 10 and
100 mA/mm. The smith chart region is sampled for 0.26 < Magnitude(T') <
0.71 and 70° < Phase(I') < 160° for standard 50 @ impedance. The model
accurately predicts the Pgyy and PAE maxima as well as their mutual
tradeoffs upon varying the load impedance. Red Contours: Measured data,
blue contours: Model.
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FIGURE 14. Comparison between modeled and measured Pgyy, Gain and
PAE as functions of available input power (Pyy) for V4 = 5 and 20 V with
two gate bias conditions 15 = 10 and 100 mA/mm. The frequency of the 22
dBm RF input signal is 10 GHz and the values of the load impedances are
set for maximum PAE. Gain-compression is accurately reproduced by the
model, which indicates an accurate non-linear model.

Given in Table 4 are the values of optimum load
impedances obtained through load-pull contours for max-
imum Poyr and PAE under different gate bias conditions.
In Fig. 13(a)-13(d), the overlays for measured and mod-
eled contours exhibit high degree of resemblance which
highlights the capability of the proposed model to cap-
ture the non-linear nature of GaN HEMTSs responsible
for predicting Poyr and PAE. Since the load-pull data is
measured at pad-level, the model representation requires
us to append the extracted manifolds from Section V to

317



ELECTRON DEVICES SOCIETY

AAMIR AHSAN et al.: PHYSICS-BASED MULTI-BIAS RF LARGE-SIGNAL GAN HEMT

TABLE 4. Load impedances.

Freq 10 mA/mm 100 mA/mm

7o 22.46 + j38.54 30.53 + j34.35
Max. PAE f1 40.61 — 593.39 37.32 — 573.44

f2 11.39 — 50.07 14.77 4 j10.83

fo 19.57 + j22.83 19.57 + j22.83
Max. Pour fi 253.48 — j65.72 253.48 — j65.72

fa 15.66 — j31.21 15.66 — j31.21

the extrinsic-level model in the ADS simulator as shown
in Fig. 12(a).

Finally, power-sweep simulations are performed to study
the model performance when the device is driven into com-
pression as shown in Fig. 14. The load impedances are
set for maximum PAE. The model does a decent job in
predicting the non-linear behavior of the device particularly
gain compression after the device hits the non-linearity and
the subsequent peaking of PAE at power back-off. Such
accuracy is achieved for multi-bias conditions with the help
of precise modeling of trapping and self heating phenom-
ena during large signal operation. These results indicate the
readiness of the model to be used as an industry standard
for GaN HEMT based state-of-the-art RF circuit design.

VII. CONCLUSION

A surface-potential-based RF large-signal model for GaN
HEMTs was demonstrated and successfully validated against
measured data for a commercial GaN device. It was shown
that fitting the model for DC-IV characteristics would auto-
matically generate the small-signal equivalent circuit for
RF simulation due to the self-consistency between the
device intrinsic charges and current, except for the extrac-
tion of parasitic capacitance and gate resistance, which
need to be extracted using standard procedures. Additionally,
trapping effects were modeled using RC circuits and broad-
band S-parameters were used to validate the RF model.
Furthermore, the model capability to predict load-pull
contours and their corresponding maxima for varying load-
impedances was shown, which could be handy for an
accurate first-pass power amplifier design.
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