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Electrons in two-dimensional hexagonal materials have an extra degree of freedom, the valley pseudospin, that can be
used to encode and process quantum information. Valley-selective excitations, governed by the circularly polarized
light resonant with the material’s bandgap, are the foundation of valleytronics. It is often assumed that achieving valley
selective excitation in pristine graphene with all-optical means is not possible due to the inversion symmetry of the sys-
tem. Here, we demonstrate that both valley-selective excitation and valley-selective high-harmonic generation can be
achieved in pristine graphene by using a combination of two counter-rotating circularly polarized fields, the fundamen-
tal and its second harmonic. Controlling the relative phase between the two colors allows us to select the valleys where the
electron—hole pairs and higher-order harmonics are generated. We also describe an all-optical method for measuring val-
ley polarization in graphene with a weak probe pulse. This work offers a robust recipe to write and read valley-selective

electron excitations in materials with zero bandgap and zero Berry curvature.

terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.418152

© 2021 Optical Society of America under the

1. INTRODUCTION

The realization of atomically thin monolayer graphene has led to
breakthroughs in fundamental and applied sciences [1,2]. Charge
carriers in graphene are described by the massless Dirac equation
and exhibit exceptional transport properties [3], making graphene
very attractive for novel electronics applications. One of the most
interesting features of graphene and gapped graphene materials
is the electron’s extra degree of freedom, the valley pseudospin,
associated with populating the local minima K and K’ in the low-
est conduction band of the Brillouin zone. This extra degree of
freedom has the potential to encode, process, and store quantum
information, opening the field of valleytronics [4].

The monolayer graphene, as opposed to gapped graphene
materials, presents a fundamental challenge for valleytronics:
it has zero bandgap and zero Berry curvature. These aspects are
generally considered to be a major impediment for valleytronics. In
gapped graphene materials, valley selectivity is achieved by match-
ing the helicity of a circularly polarized pump pulse, resonant to
the bandgap, to the sign of the Berry curvature [5-9]. Recently
demonstrated [10] sub-cycle manipulation of the electron popu-
lation in K and K’ valleys of tungsten diselenide, achieved with the
combination of a resonant pump pulse locked to the oscillations of
the terahertz control pulse, represents a major milestone. Precise
sub-cycle control over the driving light fields opens new opportu-
nities for valleytronics, such as those offered by the new concept of
topological resonance, discovered and analyzed in Refs. [11-13].
Single-cycle pulses with the controlled phase of carrier oscilla-
tions under the envelope offer a route to valleytronics in gapped
graphene-type materials even when such pulses are linearly, not
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circularly, polarized [14]. It is also possible to avoid reliance on
resonances in gapped graphene-type materials, breaking the sym-
metry between the K.and K’ valleys via a light-induced topological
phase transition, closing the gap in the desired valley [15].

Thus, with its zero bandgap, zero Berry curvature, and identical
dispersion near the bottom of the valleys, pristine graphene appears
unsuitable for valleytronics—a disappointing conclusion in view
of its exceptional transport properties. We show that this gener-
ally accepted conclusion is not correct, and that the preferential
population of a desired valley can be achieved by tailoring the
polarization state of the driving light pulse to the symmetry of the
lattice. Our proposal offers an all-optical route to valleytronics in
pristine graphene, complementing approaches based on creating a
gap by using a heterostructure of graphene with hexagonal boron
nitride [16-19], or by adding strain and/or defect engineering
[20-24].

While the light configuration we use is similar to that used
in Ref. [15] for finite bandgap materials, the physical mecha-
nism underlying valley-selective excitation in a zero-bandgap,
centrosymmetric material such as graphene is quite different. In
gapped materials, valley polarization is achieved by selectively
reducing the effective bandgap in one of the valleys [15]. Here,
valley polarization is achieved only when the light-driven electrons
explore the anisotropic region in the Brillouin zone.

We also show valley selectivity of harmonic generation in
graphene, and demonstrate it with the same field we use for valley-
selective electronic excitation. High-harmonic generation (HHG)
is a powerful method for probing attosecond electron dynam-
ics in systems as diverse as atoms, molecules [25-30], and solids
[31-44]. In solids, high-harmonic spectroscopy was used to probe
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Fig. 1.  Physical mechanism of valley polarization in graphene.
(a) Graphene lattice in the coordinate space, with the Lissajous figure
of the bicircular electric field breaking the symmetry between otherwise
identical carbon atoms A and B; two-color phase ¢ = 0. (b) Optically
induced symmetry breaking viewed in the momentum space; the vector
potential of the bicircular field is shown for ¢ =0. (¢), (d) Close-up
images of the valleys show their asymmetry, leading to different laser-
driven dynamics and different excitation rates once the electron leaves the
bottom of the valley. Here, the red contours show the conduction band
energy in the reciprocal space.

valence electrons [35], atomic arrangement in solids [35-37],
defects [45,46], band dispersion [38-40], and quantum phase
transitions [41,42,47], and to realize petahertz electronics in solids
[35,43,44]. Last but not least, we describe an all-optical method for
measuring valley polarization in graphene with a weak probe pulse.

The key idea of our approach is illustrated in Fig. 1, which
shows graphene in real (a) and reciprocal (b) space, together with
the structure of the incident electric field (a) and the correspond-
ing vector potential (b). The field is made by superimposing
two counter-rotating circularly polarized colors at frequencies w
and 2w. The Lissajous figure for the total electric field is a trefoil,
and its orientation is controlled by the relative two-color phase ¢,
i.e., the sub-cycle two-color delay measured in terms of w. In the
absence of the field, the two carbon atoms A and B, in real space, are
related by the inversion symmetry. When the field is turned on, this
inversion symmetry is broken: the electric field in (a) always points
from atom A to the one of the three neighboring atoms B during
the full laser cycle, but not the other way around. Indeed, if the
center of the Lissajous figure is placed on atom B, the field points in
the middle between its neighbors. One can control this symmetry
breaking by rotating the trefoil, interchanging the roles of atoms A
and B. Thus, the bicircular field offers a simple, all-optical, ultrafast
tool to break the inversion symmetry of the graphene lattice in a
controlled way. Such controlled symmetry breaking allows one to
control the relative excitation probabilities induced by the same
laser field in the adjacent K and K’ valleys of the Brillouin zone.

Figure 1(b) provides the complementary reciprocal-space per-
spective. In the laser field, the electron crystal momentum follows
k(z) =k; + A(¢), where k; is the initial crystal momentum, and
A(2) is the laser vector potential, shown in Fig. 1(b) for the electric
field shown in Fig. 1(a). The asymmetry between the two valleys
with respect to the vector potential is immediately visible.

Figures 1(c) and 1(d) provide additional support to this quali-
tative picture. One can observe that the two field-free valleys, K
and K, are identical only near their very bottoms. As soon as one
moves away from the bottom, the valleys start to develop the trefoil
structure, with K and K’ being mirror images of each other. How
the symmetry of the vector potential fits into the symmetry of
the valley away from their bottoms will control the dynamics and
excitation probability.

In sufficiently strong fields, excitation happens not only at the
Dirac point where the gap is equal to zero, but also in its vicinity.
For the vector potential in Fig. 1(c), the average gap seen by the
electron when following the vector potential from the Dirac point
in the K valley, i.e., moving along the trajectory K + A(z), is less
than in the K’ valley, i.e., when following the trajectory K’ + A(%).
In sufficiently strong and low-frequency fields, such that the
bandgap along trajectories K+ A(¢) and K +A(z) quickly
exceeds the photon energy, the excitation probability should be
higher in Fig. 1(c). For the same reason, rotating the vector poten-
tial as shown in Fig. 1(d) should favor population of the K’ valley.
Here, “quickly” means “within a fraction of one-third of the laser
cycle,” which is the relevant time-scale for the bicircular field.
In this context, lower laser frequencies leading to higher vector
potential are better suited to meet this requirement.

2. THEORETICAL FRAMEWORK

In the simulations, we used the nearest-neighbor tight-binding
approximation to obtain the ground state of graphene with a
hopping-energy of 2.7 eV [48]. The lattice parameter of graphene
is chosen to be 2.46 A. The resultant band structure has a zero
bandgap with linear dispersion near the two points in the Brillouin
zone known as Kand K’ points.

The density matrix approach was used to follow the electron
dynamics in graphene. The time evolution of density matrix ele-
ment p,.  was performed using semiconductor Bloch equations

within the Houston basis |7, k + A(#)) as [49,50]
P
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-, and dl;m are, respectively, the bandgap energy and
the dipole-matrix elements between 7 and 7 energy bands at k.

3k = —ietADpk (1 _5,.) +iF (%)

Dipole matrix elements were calculated as dl,fm =—i (ul,; IVk|uln‘),
where ul; is the periodic part of the Bloch function. F(¢) and A(#)
are, respectively, the electric field and vector potential of the laser
field and are related as F () = —9.A(z)/9¢. A phenomenological
term accounting for the decoherence is added with a constant
dephasing time 7;. Conduction band population relaxation was
neglected [51].
The total current was calculated as

Je ) =" pr (pliA©. )

Here, pﬁ ,, are the momentum matrix elements, obtained
as pl;m:(n,k|Vka|m,k). The off-diagonal elements
of momentum and dipole-matrix elements are related as
k _ -k k
dmn - lpmn/emn‘
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Finally, the harmonic spectrum was determined from the
Fourier transform of the time derivative of the total current as

d
T(w) = ‘]—‘T (Z [ Gk t)dk])

Here, integration is performed over the entire Brillouin zone.

2
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3. RESULTS AND DISCUSSION

Valley-selective electronic excitation induced by the tailored field
is confirmed by our numerical simulations. In the simulations,
graphene is exposed to the bicircular field with the vector potential

Ao f(2)
V2

A(t) = ([cos(wt +¢) + % cos(2wt)i| &

+ [sin(a)t +¢) — % sin(2wt):| éy> . (4)

Here, Ag = F,/w is the amplitude of the vector potential for
the fundamental field, 7, isits strength, f(z) is the temporal enve-
lope of the driving field, ¢ is the sub-cycle phase difference between
the two fields, and R is the ratio of the electric field strengths for
the two fields, leading to R /2 ratio for the amplitudes of the vector
potentials. The amplitude of the fundamental field was varied
up to F, =15MV/cm, leading to the maximum fundamental
intensity 3 x 10! W/cm?, with the fundamental wavelength
A =6 um. This laser intensity is below the damage threshold for
monolayer graphene [52-54]. We have also varied R, using R = 1
and R = 2. A pulse with a sin-squared envelope and 145 fs dura-
tion (zero to zero) is employed in this work. Our findings are valid
for a broad range of wavelengths and field intensities. To obtain
the total population of the different valleys, we have integrated
the momentum-resolved population over the sections shown in
Fig. 2(a).

To quantify the amount of valley polarization, we used the
valley asymmetry parameter defined as

K _ K

n[ B n[

(nK +n¥) /2’ )

]7:

where X and 7X are electron populations at the end of the laser
pulse in the conduction band around K’ and K valleys, respectively.

Figure 2(b) shows the asymmetry in the populations of the K
and K’ valleys as a function of the two-color phase ¢ for several
values of the fundamental field amplitude and R = 2. Substantial
contrast between the two valleys is achieved once the excitations
leave the bottom of the Dirac cone, with values as high as £36%
for ¢=0°, 90°, and no asymmetry at ¢p=45°. Here, each 180°
change in ¢ results in 120° rotation of the trefoil, yielding an
equivalent configuration. This is the reason for the periodicity of
the valley asymmetry presented in Fig. 2(b). The higher-populated
valley is the one where the vector potential “fits” better into the
shape of the valley, minimizing the bandgap along the electron
trajectory in the momentum space. The same results are obtained
when simultaneously changing the helicities of both driving fields
[Figs. 2(c) and 2(d)]. The asymmetry in the valley population is
negligible up to an intensity of 2 x 10! W/cm? and gradually
increases with intensity [Fig. 2(b)]. This shows that the valley
asymmetry is observed only when the laser pulse is able to drive the
electrons to the anisotropic part of the conduction band.
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The current generated by the electron injection into the con-
duction band valleys is accompanied by harmonic radiation and
makes substantial contribution to lower-order harmonics, such as
H4 and H5 for our two-color driver. These harmonics are stronger
whenever the dispersion € (k) is more nonlinear. In this respect,
for the electrons following trajectories K + A(#) and K’ + A(2),
the current-driven HHG from the K’ valley is preferred for the
vector potential in Fig. 1(c). Conversely, for the vector potential in
Fig. 1(d) low-order, current-driven harmonic generation should be
preferred from the K valley. Indeed, following the vector potential,
the electron is driven against the steeper walls in the K’ valley in
Fig. 1(c) and against the steeper walls in the K valley in Fig. 1(d).

These qualitative expectations are also confirmed by our
numerical simulations, shown in Fig. 3. The same laser parameters
used in Fig. 2 are used in this simulation.

In general, the interband and intraband harmonic emission
mechanisms in graphene are coupled [55-57], except at low
electric fields [57], leading to a complex interplay between the
interband and intraband emission mechanisms. The former
should be more sensitive to the dephasing than the latter. To this
end, we have calculated the harmonic spectrum for different
dephasing times 7; [Fig. 3(a)]. We find that the harmonic emission
isessentially 7; independent, until atleast H13, suggesting that the
intraband emission mechanism is generally dominant.

Figure 3(b) shows a polarization-resolved high-harmonic
spectrum. The (37 + 1) harmonics follow the polarization of
the w pulse (left-handed circular polarization), whereas (37 + 2)
harmonics follow the polarization of the 2w pulse (right-handed
circular polarization), while 37 harmonics are missing, just as in
atomic media [58,59]. In this context, we note that while harmonic
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Fig.2. Valley asymmetry around two valleys K’ and K. (a) Separation
of the Brillouin zone into K’ and K valleys. (b) Asymmetry in the valley-
resolved populations in the conduction band as a function of ¢ (green line
with an intensity 3 x 10" W/cm?) and laser intensity (yellow line with
¢=0°) for a laser with wavelength of 6 ptm, R = 2, and a dephasing time
of 10 fs. (c), (d) Excitation dynamics during the laser pulse for ¢= 0°, 45°:
switching the helicities of both fields simultaneously does not change the
outcome.
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Fig.3. Valley polarization in high-harmonic emission driven by a bicircular field in graphene. (a) Harmonic spectrum for different dephasing times, for
the vector potential shown in the inset (¢ = 0). (b) Polarization-resolved high-harmonic emission for left-handed circularly polarized fundamental (orange)
and right-handed circularly polarized second harmonic (blue). Alternating harmonics follow alternating helicities: 37 + 1 follow the fundamental, and
3n + 2 follow the second harmonic (37 harmonics missing due to symmetry). (c) Harmonic emission as a function of the two-color phase ¢. (d) Valley
polarization of H4 and H5 as a function of the two-color phase. The total field is identical for ¢= 0° and ¢= 180° owing to the threefold symmetry.

generation with single-color circularly polarized drivers is forbid-
den in atoms, such selection rules do not generally arise in solids
[32]. However, the ellipticity-dependence studies on graphene
show very weak harmonic yield for drivers with higher ellipticity
[52,55,50], as we have also observed. As in atoms, application
of bicircular fields allows for efficient generation of circularly
polarized harmonics in graphene.

Figure 3(c) shows the dependence of harmonic generation on
the orientation of the vector potential relative to the structure of
the Brillouin zone. As expected, the total harmonic yield is modu-
lated as the trefoil is rotated, with the lower-order current-driven
harmonics H4 and H5 following the expected pattern, maximizing
when electrons are driven into the steeper walls in either the K’ or
Kvalley.

The contribution of different valleys to H4 and H5 as a function
of the field orientation is presented in Fig. 3(d). Consistent with the
qualitative analysis above, maximum harmonic contribution of the
K’ valley corresponds to the vector potential orientations such as
shown in Fig. 1(c), while the maximum contribution of the K val-
ley corresponds to the vector potential orientations such as shown
in Fig. 1(d). Therefore, we are able to control the valley polarization
of the harmonics by controlling the two-color phase ¢. We have
also checked that these results do not depend on the specific direc-
tions of rotation of the two driving fields. That is, we find the same
results when simultaneously changing the helicities of both driving
fields.

To read-out the induced valley polarization, we employ a probe
pulse of frequency 3w linearly polarized along the x direction
(parallel to T' — K and K' — K directions in the Brillouin zone).
The amplitude of the probe field is 1.5 MV/cm (F,/10). Since
the K, K valleys in graphene are related by space inversion, the
even-order harmonics generated by individual (asymmetric) val-
leys are equal in magnitude but opposite in phase [Fig. 4(a), red and
green lines]. In the absence of valley polarization, their interfer-
ence leads to complete cancellation of even harmonics [Fig. 4(a)]
(full Brillouin zone signal). In the presence of valley polarization,
the symmetry is broken, the cancellation of even harmonics is
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Fig. 4. Read-out of the induced valley polarization in graphene.
(a) Harmonic spectrum corresponding to a linearly polarized field with
amplitude of 1.5 MV/cm and frequency of 3w for monolayer graphene.
The red and green lines show the valley-resolved HHG spectrum.
(b) Sixth harmonic (H6) generated by 3w pulse after the bicircular field

broke the inversion symmetry in graphene.

quenched, and even harmonics signal scales proportional to valley
polarization (see also Refs. [14,60]). The phase of the even har-
monics follows the dominant valley. Importantly, 3 Now harmonics
are absent in the spectra generated by the bicircular @ — 2w field
[Fig. 3(b)]. Thus, even harmonics generated by the 3w probe
provide background-free measurement of valley polarization.
Figure 4(b) shows generation of the second harmonic of the 3w
probe pulse (labeled H6) for the two-color phases of the bicircular
pump ¢ = 0° (red curve) and 90° (green curve), which switches
the valley polarization between K and K’ valleys. While the H6
intensity measures valley polarization, its phase clearly identifies
the dominant valley. This phase can be measured by interfering
the signal with the reference second harmonic of 3w generated,
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e.g., from a beta barium borate (BBO) crystal. Controlling the
delay of the reference second harmonic generated in the BBO
crystal, we can map the phase of H6 generated by graphene on the
amplitude modulation of their interference.

4. CONCLUSION

In summary, valley polarization in both electronic excitation and
harmonic generation can be achieved in pristine graphene by
tailoring the Lissajous figure of the driving pulse to the symmetry
of the graphene lattice. This allows one to both break the inversion
symmetry between the adjacent carbon atoms and also exploit the
anisotropic regions in the valleys, taking advantage of the fact that
the energy landscapes of the valleys are mirror images of each other.
The present work opens an avenue for a new regime of valleytronics
in pristine graphene and similar materials with zero bandgap and
zero Berry curvature.
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